The splitting problem for coalgebras

被引:11
作者
Nastasescu, C
Torrecillas, B [1 ]
机构
[1] Univ Almeria, Dept Algebra & Anal, Almeria 04071, Spain
[2] Univ Bucharest, Fac Math, RO-70109 Bucharest 1, Romania
关键词
D O I
10.1016/j.jalgebra.2004.06.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and let t be a torsion preradical, R is said to have the splitting property, provided that for every left R-module M, the torsion submodule t (M) of M is a direct summand of M. The characterization of rings with this property is a classical problem (in particular the Goldie and Dickson torsion theories have been studied) that for noncommutative rings remains open. We consider the problem for the algebra C*, associated to a coalgebra C, and the torsion preradical Rat. It is shown that if C* has the splitting property with respect a Rat, then C is finite dimensional. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 14 条
[1]  
ALBU T, 1984, MONOGR TXB PURE APPL, V84
[2]  
ANDERSON D, 1974, GRAD TEXTS MATH
[3]  
BRZEZINSKI T, 2003, CORINGS COMODULES
[4]  
Dascalescu S., 2000, HOPF ALGEBRAS INTRO
[5]  
Gabriel, 1962, B SOC MATH FRANCE, V90, P323
[6]   MODULES OVER DEDEKIND RINGS AND VALUATION RINGS [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) :327-340
[7]  
KAPLANSKY L, 1960, J INDIAN MATH SOC, V24, P279
[8]  
MONTGOMERY S, 1993, CBMS LECT NOTES, V82
[9]  
ROTMAN J, 1960, AN ACAD BRAS CIENC, V32, P193
[10]  
SANDOMIERSKI FL, 1972, RING THEORY, P333