3D Logic Cells Design and Results Based on Vertical NWFET Technology Including Tied Compact Model

被引:0
作者
Poittevin, Arnaud [1 ]
Mukherjee, Chhandak [2 ]
O'Connor, Ian [1 ]
Maneux, Cristell [2 ]
Larrieu, Guilhem [3 ,4 ]
Deng, Marina [2 ]
Le Beux, Sebastien [1 ]
Marc, Francois [2 ]
Lecestre, Aurelie [3 ]
Marchand, Cedric [1 ]
Kumar, Abhishek [3 ]
机构
[1] Univ Lyon, Lyon Inst Nanotechnol, Ecole Cent Lyon, CNRS UMR 5270, Ecully, France
[2] Univ Bordeaux, Bordeaux INP Talence, CNRS UMR 5218, Bordeaux, France
[3] Univ Toulouse, INP Toulouse, CNRS, LAAS, Toulouse, France
[4] Univ Tokyo, Inst Ind Sci, LIMMS CNRS IIS, Tokyo, Japan
来源
VLSI-SOC: DESIGN TRENDS, VLSI-SOC 2020 | 2021年 / 621卷
关键词
Vertical NWFET technology; compact model; VNWFET DC measurements; 3D logic circuit cell; circuit simulation results; TRANSISTORS;
D O I
10.1007/978-3-030-81641-4_14
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Gate-all-around Vertical Nanowire Field Effect Transistors (VNWFET) are emerging devices, which are well suited to pursue scaling beyond lateral scaling limitations around 7 nm. This work explores the relative merits and drawbacks of the technology in the context of logic cell design. We describe a junctionless nanowire technology and associated compact model, which accurately describes fabricated device behavior in all regions of operations for transistors based on between 16 and 625 parallel nanowires of diameters between 22 and 50 nm. We used this model to simulate the projected performance of inverter logic gates based on passive load, active load and complementary topologies and to carry out a performance exploration for the number of nanowires in transistors. In terms of compactness, through a dedicated full 3D layout design, we also demonstrate a 48% reduction in lateral dimensions for the complementary structure with respect to 7 nm FinFET-based inverters.
引用
收藏
页码:301 / 321
页数:21
相关论文
共 19 条
  • [1] ASAP7: A 7-nm finFET predictive process design kit
    Clark, Lawrence T.
    Vashishtha, Vinay
    Shifren, Lucian
    Gujja, Aditya
    Sinha, Saurabh
    Cline, Brian
    Ramamurthy, Chandarasekaran
    Yeric, Greg
    [J]. MICROELECTRONICS JOURNAL, 2016, 53 : 105 - 115
  • [2] Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/NNANO.2010.15, 10.1038/nnano.2010.15]
  • [3] Cui TS, 2014, 2014 INTERNATIONAL GREEN COMPUTING CONFERENCE (IGCC)
  • [4] Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around
    Guerfi, Youssouf
    Larrieu, Guilhem
    [J]. NANOSCALE RESEARCH LETTERS, 2016, 11
  • [5] Measurement of carrier mobility in silicon nanowires
    Gunawan, Oki
    Sekaric, Lidija
    Majumdar, Amlan
    Rooks, Michael
    Appenzeller, Joerg
    Sleight, Jeffrey W.
    Guha, Supratik
    Haensch, Wilfried
    [J]. NANO LETTERS, 2008, 8 (06) : 1566 - 1571
  • [6] Explicit continuous models of drain current, terminal charges and intrinsic capacitance for a long-channel junctionless nanowire transistor
    Hamzah, Afiq
    Ismail, Razali
    Alias, N. Ezaila
    Tan, Michael Loong Peng
    Poorasl, Ali
    [J]. PHYSICA SCRIPTA, 2019, 94 (10)
  • [7] Vertical nanowire array-based field effect transistors for ultimate scaling
    Larrieu, G.
    Han, X. -L.
    [J]. NANOSCALE, 2013, 5 (06) : 2437 - 2441
  • [8] Vertically Stacked and Independently Controlled Twin-Gate MOSFETs on a Single Si Nanowire
    Li, Xiang
    Chen, Zhixian
    Shen, Nansheng
    Sarkar, Deblina
    Singh, Navab
    Banerjee, Kaustav
    Lo, Guo-Qiang
    Kwong, Dim-Lee
    [J]. IEEE ELECTRON DEVICE LETTERS, 2011, 32 (11) : 1492 - 1494
  • [9] A compact explicit DC model for short channel Gate-All-Around junctionless MOSFETs
    Lime, Francois
    Avila-Herrera, Fernando
    Cerdeira, Antonio
    Iniguez, Benjamin
    [J]. SOLID-STATE ELECTRONICS, 2017, 131 : 24 - 29
  • [10] A Compact Explicit Model for Long-Channel Gate-All-Around Junctionless MOSFETs. Part I: DC Characteristics
    Lime, Francois
    Moldovan, Oana
    Iniguez, Benjamin
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (09) : 3036 - 3041