Existence of positive solutions for second-order semipositone differential equations on the half-line

被引:15
作者
Zhang, Xinguang
Liu, Lishan [1 ]
Wu, Yonghong
机构
[1] Qufu Normal Univ, Dept Math, Shandong 273166, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6001, Australia
[3] Yantai Univ, Dept Math & Informat Sci, Shandong 264005, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
semipositone; half-line; positive solutions; cone;
D O I
10.1016/j.amc.2006.07.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of constructing a special cone, we obtain a sufficient condition for the existence of positive solution for semipositone singular Sturm-Liouville boundary value problem on the half-line. The results obtained generalize and improve the corresponding results of Zhang and Liu in papers [X.G. Zhang, L.S. Liu, Positive solutions of superlinear semipositone singular Dirichlet boundary value problems, J. Math. Anal. Appl. 316 (2006) 525-537, Y.S. Liu, Existence and unboundedness of positive solutions for singular boundary value problems on half-line, Appl. Math. Comput. 144 (2003) 543-556]. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:628 / 635
页数:8
相关论文
共 13 条
[1]  
Agarwal R.P., 2001, Infinite Interval Problems for Differential, Difference and Integral Equations
[2]  
Aris R., 1965, Introduction to the Analysis of Chemical Reactors
[3]  
BAXLEY JV, 1990, J MATH ANAL APPL, V147, P127
[4]   SINGULAR BOUNDARY-VALUE-PROBLEMS ON A HALF-LINE [J].
CHEN, SZ ;
ZHANG, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 195 (02) :449-468
[5]  
Guo D., 1988, NONLINEAR PROBLEMS A
[6]   Existence of positive solutions for Sturm-Liouville boundary value problems on the half-line [J].
Lian, Hairong ;
Ge, Weigao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :781-792
[7]   Solutions of impulsive boundary value problems on the half-line [J].
Liu, XY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (02) :411-430
[8]   Existence and unboundedness of positive solutions for singular boundary value problems on half-line [J].
Liu, YS .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) :543-556
[9]  
Xu X, 2002, J MATH ANAL APPL, V273, P480, DOI 10.1016/S0022-247X(02)00259-7
[10]  
XU X, IN PRESS NONLINEAR A