On the smallest eigenvalue of Dα-matrix of connected graphs

被引:3
作者
Alhevaz, Abdollah [1 ]
Baghipur, Maryam [1 ]
Pirzada, Shariefuddin [2 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, POB 316-3619995161, Shahrood, Iran
[2] Univ Kashmir, Dept Math, Srinagar, India
关键词
Generalized distance matrix; smallest eigenvalue; chromatic number; Wiener index; transmission regular graph; SIGNLESS LAPLACIAN EIGENVALUE; DISTANCE MATRIX; SPECTRA;
D O I
10.1080/03081087.2021.1959498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple connected graph G of order n, let D(G), Tr(G), D-L(G) and D-Q(G) be, respectively, the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix and the distance signless Laplacian matrix of G. For a real number alpha is an element of [0, 1], the generalized distance matrix D-alpha(G) is defined as D-alpha(G) = alpha Tr(G) + (1 - alpha)D(G). In this paper, we establish relations between the smallest eigenvalues of D(G), D-Q(G) and D-alpha(G). We obtain sharp upper and lower bounds for the smallest eigenvalue of D-alpha(G) in terms of various graph parameters like the order n, the diameter d, the Wiener index W(G), the chromatic number chi(G), the transmission degrees and the parameter a. We also identify the extremal graphs attaining the given bounds.
引用
收藏
页码:6478 / 6499
页数:22
相关论文
共 30 条
[1]   On the Wiener index, distance cospectrality and transmission-regular graphs [J].
Abiad, Aida ;
Brimkov, Boris ;
Erey, Aysel ;
Leshock, Lorinda ;
Martinez-Rivera, Xavier ;
Suil, O. ;
Song, Sung-Yell ;
Williford, Jason .
DISCRETE APPLIED MATHEMATICS, 2017, 230 :1-10
[2]   Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph [J].
Alhevaz, A. ;
Baghipur, M. ;
Ganie, Hilal A. ;
Pirzada, S. .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (13) :2423-2440
[3]   On the Generalized Distance Energy of Graphs [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Ganie, Hilal A. ;
Shang, Yilun .
MATHEMATICS, 2020, 8 (01)
[4]   Bounds for the Generalized Distance Eigenvalues of a Graph [J].
Alhevaz, Abdollah ;
Baghipur, Maryam ;
Ganie, Hilal Ahmad ;
Shang, Yilun .
SYMMETRY-BASEL, 2019, 11 (12)
[5]   On the second largest eigenvalue of the generalized distance matrix of graphs [J].
Alhevaza, Abdollah ;
Baghipura, Maryam ;
Ganie, Hilal Ahmad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 603 :226-241
[6]   On the distance signless Laplacian of a graph [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06) :1113-1123
[7]   SOME PROPERTIES OF THE DISTANCE LAPLACIAN EIGENVALUES OF A GRAPH [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) :751-761
[8]   Two Laplacians for the distance matrix of a graph [J].
Aouchiche, Mustapha ;
Hansen, Pierre .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) :21-33
[9]   FAMILIES OF GRAPHS HAVING FEW DISTINCT DISTANCE EIGENVALUES WITH ARBITRARY DIAMETER [J].
Atik, Fouzul ;
Panigrahi, Pratima .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 29 :194-205
[10]  
Brimkov B, 2020, ELECTRON J LINEAR AL, V36, P334