The lumped mass FEM for a time-fractional cable equation

被引:8
|
作者
Al-Maskari, Mariam [1 ]
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123, Muscat, Oman
关键词
Time-fractional cable equation; Lumped mass FEM; Laplace transform; Convolution quadrature; Error estimate; Nonsmooth data; FINITE-ELEMENT-METHOD; ORDER EVOLUTION EQUATION; DIFFUSION-WAVE EQUATIONS; CONVOLUTION QUADRATURE; PARABOLIC PROBLEM; NONSMOOTH DATA; NUMERICAL-SOLUTION; ERROR ANALYSIS; APPROXIMATIONS; CALCULUS;
D O I
10.1016/j.apnum.2018.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of a time-fractional cable equation involving two Riemann-Liouville fractional derivatives. We investigate a semidiscrete scheme based on the lumped mass Galerkin finite element method (FEM), using piecewise linear functions. We establish optimal error estimates for smooth and middly smooth initial data, i.e., v is an element of H-q(Omega) boolean AND H0(1)(Omega), q = 1,2. For nonsmooth initial data, i.e., v is an element of L-2 (Omega), the optimal L-2(Omega)-norm error estimate requires an additional assumption on mesh, which is known to be satisfied for symmetric meshes. A quasi-optimal L-infinity(Omega)-norm error estimate is also obtained. Further, we analyze two fully discrete schemes using convolution quadrature in time based on the backward Euler and the second-order backward difference methods, and derive error estimates for smooth and nonsmooth data. Finally, we present several numerical examples to confirm our theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [31] A Mixed FEM for a Time-Fractional Fokker-Planck Model
    Karaa, Samir
    Mustapha, Kassem
    Ahmed, Naveed
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [32] Uniqueness of the potential in a time-fractional diffusion equation
    Jing, Xiaohua
    Peng, Jigen
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2023, 31 (04): : 467 - 477
  • [33] Symmetry classification of time-fractional diffusion equation
    Naeem, I.
    Khan, M. D.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 560 - 570
  • [34] Inverse problem for a time-fractional parabolic equation
    Ozbilge, Ebru
    Demir, Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 9
  • [35] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [36] A backward problem for the time-fractional diffusion equation
    Liu, J. J.
    Yamamoto, M.
    APPLICABLE ANALYSIS, 2010, 89 (11) : 1769 - 1788
  • [37] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [38] On the maximum principle for a time-fractional diffusion equation
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2017, 20 : 1131 - 1145
  • [39] ON THE MAXIMUM PRINCIPLE FOR A TIME-FRACTIONAL DIFFUSION EQUATION
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1131 - 1145
  • [40] Fractional Lie group method of the time-fractional Boussinesq equation
    Jafari, Hossein
    Kadkhoda, Nematollah
    Baleanu, Dumitru
    NONLINEAR DYNAMICS, 2015, 81 (03) : 1569 - 1574