The lumped mass FEM for a time-fractional cable equation

被引:8
|
作者
Al-Maskari, Mariam [1 ]
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123, Muscat, Oman
关键词
Time-fractional cable equation; Lumped mass FEM; Laplace transform; Convolution quadrature; Error estimate; Nonsmooth data; FINITE-ELEMENT-METHOD; ORDER EVOLUTION EQUATION; DIFFUSION-WAVE EQUATIONS; CONVOLUTION QUADRATURE; PARABOLIC PROBLEM; NONSMOOTH DATA; NUMERICAL-SOLUTION; ERROR ANALYSIS; APPROXIMATIONS; CALCULUS;
D O I
10.1016/j.apnum.2018.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of a time-fractional cable equation involving two Riemann-Liouville fractional derivatives. We investigate a semidiscrete scheme based on the lumped mass Galerkin finite element method (FEM), using piecewise linear functions. We establish optimal error estimates for smooth and middly smooth initial data, i.e., v is an element of H-q(Omega) boolean AND H0(1)(Omega), q = 1,2. For nonsmooth initial data, i.e., v is an element of L-2 (Omega), the optimal L-2(Omega)-norm error estimate requires an additional assumption on mesh, which is known to be satisfied for symmetric meshes. A quasi-optimal L-infinity(Omega)-norm error estimate is also obtained. Further, we analyze two fully discrete schemes using convolution quadrature in time based on the backward Euler and the second-order backward difference methods, and derive error estimates for smooth and nonsmooth data. Finally, we present several numerical examples to confirm our theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [21] Inverse problem for a time-fractional parabolic equation
    Ebru Ozbilge
    Ali Demir
    Journal of Inequalities and Applications, 2015
  • [22] Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation
    Guan, Zhen
    Wang, Jungang
    Liu, Ying
    Nie, Yufeng
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 133 - 156
  • [23] ASYMPTOTIC BEHAVIOUR OF THE TIME-FRACTIONAL TELEGRAPH EQUATION
    Vergara, Vicente
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (03) : 890 - 893
  • [24] On the solution of generalized time-fractional telegraphic equation
    Albalawi, Kholoud Saad
    Shokhanda, Rachana
    Goswami, Pranay
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [25] On the time-fractional Cattaneo equation of distributed order
    Awad, Emad
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 518 : 210 - 233
  • [26] Time-fractional diffusion equation with ψ-Hilfer derivative
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [27] Quenching Phenomenon of a Time-Fractional Kawarada Equation
    Xu, Yufeng
    Wang, Zhibo
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (10):
  • [28] The Time-fractional Airy Equation on the Metric Graph
    Rakhimov, Kamoladdin
    Sobirov, Zarifboy
    Jabborov, Nasridin
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (03): : 376 - 388
  • [29] A backward problem for the time-fractional diffusion equation
    Al-Jamal, Mohammad F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2466 - 2474
  • [30] Tychonoff Solutions of the Time-Fractional Heat Equation
    Ascione, Giacomo
    FRACTAL AND FRACTIONAL, 2022, 6 (06)