The lumped mass FEM for a time-fractional cable equation

被引:8
|
作者
Al-Maskari, Mariam [1 ]
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123, Muscat, Oman
关键词
Time-fractional cable equation; Lumped mass FEM; Laplace transform; Convolution quadrature; Error estimate; Nonsmooth data; FINITE-ELEMENT-METHOD; ORDER EVOLUTION EQUATION; DIFFUSION-WAVE EQUATIONS; CONVOLUTION QUADRATURE; PARABOLIC PROBLEM; NONSMOOTH DATA; NUMERICAL-SOLUTION; ERROR ANALYSIS; APPROXIMATIONS; CALCULUS;
D O I
10.1016/j.apnum.2018.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of a time-fractional cable equation involving two Riemann-Liouville fractional derivatives. We investigate a semidiscrete scheme based on the lumped mass Galerkin finite element method (FEM), using piecewise linear functions. We establish optimal error estimates for smooth and middly smooth initial data, i.e., v is an element of H-q(Omega) boolean AND H0(1)(Omega), q = 1,2. For nonsmooth initial data, i.e., v is an element of L-2 (Omega), the optimal L-2(Omega)-norm error estimate requires an additional assumption on mesh, which is known to be satisfied for symmetric meshes. A quasi-optimal L-infinity(Omega)-norm error estimate is also obtained. Further, we analyze two fully discrete schemes using convolution quadrature in time based on the backward Euler and the second-order backward difference methods, and derive error estimates for smooth and nonsmooth data. Finally, we present several numerical examples to confirm our theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [1] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [2] Time-fractional Schrodinger equation
    Emamirad, Hassan
    Rougirel, Arnaud
    JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 279 - 293
  • [3] Nonsmooth data error estimates for FEM approximations of the time fractional cable equation
    Zhu, Peng
    Xie, Shenglan
    Wang, Xiaoshen
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 170 - 184
  • [4] Numerical solution of nonlinear time-fractional Cable equation by finite volume element method
    Yazdani, A.
    Yousefian, R.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (47): : 55 - 69
  • [5] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Yang Liu
    Yan-Wei Du
    Hong Li
    Jin-Feng Wang
    Nonlinear Dynamics, 2016, 85 : 2535 - 2548
  • [6] Numerical solution of nonlinear time-fractional Cable equation by finite volume element method
    Yazdani, A.
    Yousefian, R.
    Italian Journal of Pure and Applied Mathematics, 2022, 47 : 55 - 69
  • [7] A two-grid finite element approximation for a nonlinear time-fractional Cable equation
    Liu, Yang
    Du, Yan-Wei
    Li, Hong
    Wang, Jin-Feng
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2535 - 2548
  • [8] On Time-Fractional Cylindrical Nonlinear Equation
    HGAbdelwahed
    EKElShewy
    AAMahmoud
    Chinese Physics Letters, 2016, 33 (11) : 66 - 70
  • [9] Foundation of the time-fractional beam equation
    Loreti, Paola
    Sforza, Daniela
    APPLIED MATHEMATICS LETTERS, 2024, 156
  • [10] On Time-Fractional Cylindrical Nonlinear Equation
    H.G.Abdelwahed
    E.K.ElShewy
    A.A.Mahmoud
    Chinese Physics Letters, 2016, (11) : 66 - 70