The lumped mass FEM for a time-fractional cable equation

被引:8
|
作者
Al-Maskari, Mariam [1 ]
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123, Muscat, Oman
关键词
Time-fractional cable equation; Lumped mass FEM; Laplace transform; Convolution quadrature; Error estimate; Nonsmooth data; FINITE-ELEMENT-METHOD; ORDER EVOLUTION EQUATION; DIFFUSION-WAVE EQUATIONS; CONVOLUTION QUADRATURE; PARABOLIC PROBLEM; NONSMOOTH DATA; NUMERICAL-SOLUTION; ERROR ANALYSIS; APPROXIMATIONS; CALCULUS;
D O I
10.1016/j.apnum.2018.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical approximation of a time-fractional cable equation involving two Riemann-Liouville fractional derivatives. We investigate a semidiscrete scheme based on the lumped mass Galerkin finite element method (FEM), using piecewise linear functions. We establish optimal error estimates for smooth and middly smooth initial data, i.e., v is an element of H-q(Omega) boolean AND H0(1)(Omega), q = 1,2. For nonsmooth initial data, i.e., v is an element of L-2 (Omega), the optimal L-2(Omega)-norm error estimate requires an additional assumption on mesh, which is known to be satisfied for symmetric meshes. A quasi-optimal L-infinity(Omega)-norm error estimate is also obtained. Further, we analyze two fully discrete schemes using convolution quadrature in time based on the backward Euler and the second-order backward difference methods, and derive error estimates for smooth and nonsmooth data. Finally, we present several numerical examples to confirm our theoretical results. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [1] The time-fractional Cahn-Hilliard equation: analysis and approximation
    Al-Maskari, Mariam
    Karaa, Samir
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1831 - 1865
  • [2] Galerkin FEM for a time-fractional Oldroyd-B fluid problem
    Mariam Al-Maskari
    Samir Karaa
    Advances in Computational Mathematics, 2019, 45 : 1005 - 1029
  • [3] Galerkin FEM for a time-fractional Oldroyd-B fluid problem
    Al-Maskari, Mariam
    Karaa, Samir
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 1005 - 1029
  • [4] On a nonlinear time-fractional cable equation
    Jleli, Mohamed
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (09): : 23584 - 23597
  • [5] Nonsmooth data error estimates for FEM approximations of the time fractional cable equation
    Zhu, Peng
    Xie, Shenglan
    Wang, Xiaoshen
    APPLIED NUMERICAL MATHEMATICS, 2017, 121 : 170 - 184
  • [6] Galerkin Type Methods for Semilinear Time-Fractional Diffusion Problems
    Karaa, Samir
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [7] REGULARITY THEORY AND NUMERICAL ALGORITHM FOR THE TIME-FRACTIONAL KLEIN-KRAMERS EQUATION
    Sun, Jing
    Nie, Daxin
    Deng, Weihua
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (02): : 257 - 279
  • [8] Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation
    Guan, Zhen
    Wang, Jungang
    Liu, Ying
    Nie, Yufeng
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 133 - 156
  • [9] A Mixed FEM for a Time-Fractional Fokker-Planck Model
    Karaa, Samir
    Mustapha, Kassem
    Ahmed, Naveed
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 99 (03)
  • [10] Efficient Galerkin finite element methods for a time-fractional Cattaneo equation
    Chen, An
    Nong, Lijuan
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)