Biocompatible multi-walled carbon nanotube-CdTe quantum dot-polymer hybrids for medical applications

被引:18
作者
Baslak, Canan [1 ,2 ]
Kars, Meltem Demirel [1 ,3 ]
Karaman, Mustafa [1 ,4 ]
Kus, Mahmut [1 ,4 ]
Cengeloglu, Yunus [1 ,2 ]
Ersoz, Mustafa [1 ,2 ]
机构
[1] Selcuk Univ, Adv Technol Res & Applicat Ctr, TR-42075 Konya, Turkey
[2] Selcuk Univ, Fac Sci, Dept Chem, TR-42075 Konya, Turkey
[3] Selcuk Univ, Sarayonu Vocat High Sch, TR-42075 Konya, Turkey
[4] Selcuk Univ, Fac Engn, Dept Chem Engn, TR-42075 Konya, Turkey
关键词
Quantum dots; Carbon nanotubes; CNT-QD hybrids; Biocompatibility; Live cell imaging; CHEMICAL-VAPOR-DEPOSITION; BIOMEDICAL APPLICATIONS; ANTIMICROBIAL ACTIVITY; SURFACE MODIFICATION; HIGH-QUALITY; THIN-FILMS; IN-VITRO; NANOCRYSTALS; CELLS; POLY(AMIDOAMINE);
D O I
10.1016/j.jlumin.2014.11.030
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Herein we report the synthesis of polymer coated quantum dots (QDs)-carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)-QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT-QD-polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT-QD-polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT-QD-polymer hybrids has shown that the existence of PGMA thin coating on MWCNT-QD hybrid surface decreased the cellular toxicity and increased biocompatibility. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 47 条
[21]   Effect of noncovalent chemical modification on the electrical conductivity and tensile properties of poly(methyl methacrylate)/carbon nanotube composites [J].
Koysuren, Ozcan ;
Karaman, Mustafa ;
Ozyurt, Demet .
JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (06) :4557-4563
[22]   Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production [J].
Kumar, Mukul ;
Ando, Yoshinori .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (06) :3739-3758
[23]   Particle surface design using an all-dry encapsulation method [J].
Lau, Kenneth K. S. ;
Gleason, Karen K. .
ADVANCED MATERIALS, 2006, 18 (15) :1972-+
[24]   DNA-directed self-assembling of carbon nanotubes [J].
Li, SN ;
He, PG ;
Dong, JH ;
Guo, ZX ;
Dai, LM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (01) :14-15
[25]   In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice [J].
Liu, Zhuang ;
Cai, Weibo ;
He, Lina ;
Nakayama, Nozomi ;
Chen, Kai ;
Sun, Xiaoming ;
Chen, Xiaoyuan ;
Dai, Hongjie .
NATURE NANOTECHNOLOGY, 2007, 2 (01) :47-52
[26]   Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery [J].
Liu, Zhuang ;
Tabakman, Scott ;
Welsher, Kevin ;
Dai, Hongjie .
NANO RESEARCH, 2009, 2 (02) :85-120
[27]   Bioconjugation of quantum dot luminescent probes for Western blot analysis [J].
Makrides, SC ;
Gasbarro, C ;
Bello, JM .
BIOTECHNIQUES, 2005, 39 (04) :501-506
[28]   Hot filament chemical vapor deposition of poly(glycidyl methacrylate) thin films using tert-butyl peroxide as an initiator [J].
Mao, Y ;
Gleason, KK .
LANGMUIR, 2004, 20 (06) :2484-2488
[29]   Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes [J].
Neelgund, Gururaj M. ;
Oki, Aderemi ;
Luo, Zhiping .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2012, 100 :215-221
[30]   Quantum dot modified multiwall carbon nanotubes [J].
Olek, Maciej ;
Buesgen, Thomas ;
Hilgendorff, Michael ;
Giersig, Michael .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (26) :12901-12904