Oil Spill Environmental Risk Assessment and Mapping in Coastal China Using Automatic Identification System (AIS) Data

被引:24
作者
Zhu, Gaoru [1 ]
Xie, Zhenglei [2 ,3 ]
Xu, Honglei [1 ]
Wang, Nan [2 ]
Zhang, Liguo [1 ]
Mao, Ning [1 ]
Cheng, Jinxiang [1 ]
机构
[1] Minist Transport Peoples Republ China, Transport Planning & Res Inst, Lab Transport Pollut Control & Monitoring Technol, Beijing 100028, Peoples R China
[2] Nanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
[3] Minist Nat Resources, Key Lab Coastal Salt Marsh Ecosyst & Resources, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
oil spill; environmental pollution risk; coastal area; China; BOHAI SEA; VULNERABILITY; POLLUTION; PREVENTION; FRAMEWORK; IMPACTS;
D O I
10.3390/su14105837
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The rapid expansion in shipping traffic, oil tankers, and oil field exploration in coastal and marine areas has, inevitably, resulted in the occurrence of many oil spill accidents. Oil spill accidents, which cause serious socio-economic, health, and environmental risks in coastal and marine areas, are a global concern. An oil spill pollution risk distribution map, combining multiple spill sources, is an effective tool by which to identify high-risk areas, which may help decision-makers in adopting contingency response and integrated coastal management. However, the assessment of oil spill distribution and risk assessment has been restricted, due to their heavy dependence on laboratory experiments and model simulations lacking reliable shipping data, which often derive inaccurate mapping results. This study combines the automatic identification system (AIS) and other data to precisely quantify the spatial extent of accident risk in coastal China. Based on oil quantity, oil spill rate, and accident probability, the ship, oil storage tank, submarine pipeline, and oil platform accidents spill risk index is analyzed. Next, combined with the sensitive degree of a coastal area, considering environmental and social issues, the oil spill environmental risk index is calculated. The oil spill pollution risk level is classified into five categories based on the oil spill pollution risk index, namely the low-risk zone, relatively low-risk zone, moderate-risk zone, relatively high-risk zone, and high-risk zone. The relatively high oil spill environmental risk concentration zone is located in the Bohai Sea, inter-border area between the Yellow Sea and Bohai Sea, the Yangtze River estuary, south of the Taiwan Strait, and the Pearl River estuary. The high-risk zone in the Bohai Sea is 36,018 km(2) in area, with an average risk value of 32.23, whereas the high-risk area in the Pearl River estuary is only 14,007 km(2). The high-risk area proportions in Tianjin are 23.5%, while those in Fujian, Hainan, Jiangsu, and Guangxi are very low. The low-risk area proportion in Hainan Province is 62%, while the value in Tianjin is only 2.9%. This study will be helpful in assisting decision-makers in mapping the influence area of oil spills and adopting the important strategies and effective management and conservation countermeasures for ship accidents in the coastal areas of China.
引用
收藏
页数:16
相关论文
共 50 条
[21]   OIL SPILL DETECTION AND MAPPING USING SENTINEL-1 AND SENTINEL-2 IN THE ARABIAN GULF COASTAL WATERS [J].
Gafoor, Fahim Abdul ;
Al Shehhi, Maryam R. .
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, :6745-6748
[22]   Vulnerability assessment of coastal tourist attractions to oil spill stress based on a pressure-state-response framework: A case study of the Bohai Sea, China [J].
Wang, Yebao ;
Du, Peipei ;
Liu, Baijing ;
Chen, Chuntao .
FRONTIERS IN MARINE SCIENCE, 2023, 10
[23]   Oil spill detection from thermal anomaly using ASTER data in Yinggehai of Hainan, China [J].
Cai, Guoyin ;
Wu, Jian ;
Xue, Yong ;
Wan, Wei ;
Huang, Xiaoxia .
IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, :898-900
[24]   Oil spill sensitivity analysis and risk assessment for Gulf of Kachchh, India, using integrated modeling [J].
Kankara, R. S. ;
Subramanian, B. R. .
JOURNAL OF COASTAL RESEARCH, 2007, 23 (05) :1251-+
[25]   Environmental sensitivity index mapping as a prevention strategy against oil spill pollution: A case study on the coastal area of South Sumatera Province in Indonesia [J].
Rustandi, Y. ;
Damar, A. ;
Rakasiwi, G. ;
Afandy, A. ;
Hamdani, A. ;
Mulyana, D. .
WORLD SEAFOOD CONGRESS 2019 - SEAFOOD SUPPLY CHAINS OF THE FUTURE: INNOVATION, RESPONSIBILITY, SUSTAINABILITY, 2020, 414
[26]   Source identification, environmental risk assessment and human health risks associated with toxic elements present in a coastal industrial environment, India [J].
Satapathy, Shreemayee ;
Panda, C. R. .
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2018, 40 (06) :2243-2257
[27]   Localized regional environmental risk in mountainous urban areas of Southwest China: identification, assessment, and management strategies in Kunming [J].
Jin, Wei ;
Mo, Qianwen ;
Li, Guihong ;
Wang, Gang ;
Zhu, Binqiang ;
Wan, Xing ;
Lin, Peng ;
Huang, Bin ;
Pan, Xuejun .
ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2025, 27 (01) :63-75
[28]   Assessment of ecological stress caused by maritime vessels based on a comprehensive model using AIS data: Case study of the Bohai Sea, China [J].
Liu, Baijing ;
Wu, Xiaoqing ;
Liu, Xin ;
Gong, Meng .
ECOLOGICAL INDICATORS, 2021, 126
[29]   Health risk assessment of polycyclic aromatic hydrocarbons in coastal soils of Koh Samed Island (Thailand) after the oil spill incident in 2013 [J].
Apiratikul, Ronbanchob ;
Pongpiachan, Siwatt ;
Hashmi, Muhammad Zaffar .
MARINE POLLUTION BULLETIN, 2020, 150
[30]   Application of environmental risk assessment for strategic decision-making in coastal areas: case studies in China [J].
Wu, Kan-Kan ;
Zhang, Luo-Ping .
JOURNAL OF ENVIRONMENTAL PLANNING AND MANAGEMENT, 2016, 59 (05) :826-842