Angular quantization and form factors in massive integrable models

被引:50
作者
Brazhnikov, V
Lukyanov, S
机构
[1] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08855 USA
[2] Cornell Univ, Newman Lab, Ithaca, NY 14853 USA
[3] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
基金
美国国家科学基金会;
关键词
integrable quantum field theory; form factors; angular quantization;
D O I
10.1016/S0550-3213(97)00713-X
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss an application of the method of angular quantization to the reconstruction of form factors of local fields in massive integrable models, The general formalism is illustrated with examples of the Klein-Gordon, sinh-Gordon and Bullough-Dodd models. For the fatter two models the angular quantization approach makes it possible to obtain free field representations for form factors of exponential operators. We discuss an intriguing relation between the free field representations and deformations of the Virasoro algebra. The deformation associated with the Bullough-Dodd models appears to be different from the known deformed Virasoro algebra. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:616 / 636
页数:21
相关论文
共 40 条
[1]  
ACERBI C, ISASEP297
[2]  
Arefeva I., 1974, PISMA ESKP TEOR FIZ, V20, P680
[3]   QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN [J].
ARINSHTEIN, AE ;
FATEYEV, VA ;
ZAMOLODCHIKOV, AB .
PHYSICS LETTERS B, 1979, 87 (04) :389-392
[4]   Quantum W-N algebras and Macdonald polynomials [J].
Awata, H ;
Kubo, H ;
Odake, S ;
Shiraishi, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (02) :401-415
[5]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[6]   LATTICE ISING-MODEL IN A FIELD - E8 SCATTERING-THEORY [J].
BAZHANOV, VV ;
NIENHUIS, B ;
WARNAAR, SO .
PHYSICS LETTERS B, 1994, 322 (03) :198-206
[7]   CONSTRUCTION OF GREEN-FUNCTIONS FROM AN EXACT S-MATRIX [J].
BERG, B ;
KAROWSKI, M ;
WEISZ, P .
PHYSICAL REVIEW D, 1979, 19 (08) :2477-2479
[8]   DIAGONALIZATION OF THE XXZ HAMILTONIAN BY VERTEX OPERATORS [J].
DAVIES, B ;
FODA, O ;
JIMBO, M ;
MIWA, T ;
NAKAYASHIKI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :89-153
[9]  
DODD RK, 1977, P ROY SOC LOND A MAT, V352, P481, DOI 10.1098/rspa.1977.0012
[10]  
Drinfeld V.G., 1985, J SOVIET MATH, V30, P1975, DOI [DOI 10.1007/BF02105860, 10.1007/BF02105860]