Uniqueness for an overdetermined boundary value problem for the p-Laplacian

被引:2
作者
Bahrami, F
Shahgholian, H
机构
[1] Univ Tehran, Dept Math, Tehran, Iran
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
inverse domain problem; p-Laplacian; uniqueness;
D O I
10.1090/S0002-9939-98-04087-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p > 1 set Delta(p)u = div(\del u\(p-2)del u), and let mu be a measure with compact support. Suppose, for j = 1, 2, there are functions u(j) is an element of W-1,W-p and (bounded) domains Omega(j), both containing the support of mu with the property that Delta(p)u(j) = chi(Omega j) - mu in R-N (weakly) and u(j) = 0 in the complement of Omega(j). If in addition Omega(1) boolean AND Omega(2) is convex, then Omega(1) = Omega(2) and u(1) = u(2).
引用
收藏
页码:745 / 750
页数:6
相关论文
共 12 条
[1]  
Gustafsson B, 1996, J REINE ANGEW MATH, V473, P137
[2]   ON QUADRATURE DOMAINS AND AN INVERSE PROBLEM IN POTENTIAL-THEORY [J].
GUSTAFSSON, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1990, 55 :172-216
[3]  
Heinonen J., 1993, Nonlinear Potential Theory of Degenerate Elliptic Equations
[4]  
Isakov V., 1990, Mathematical Surveys Monogr., V34
[5]  
KARP L, IN PRESS REGULARITY
[7]  
Novikov P. S, 1938, DOKL AKAD NAUK+, V18, P165
[8]  
SAKAI M, 1982, LECT NOTES MATH, V934, P1
[9]   CONVEXITY AND UNIQUENESS IN AN INVERSE PROBLEM OF POTENTIAL-THEORY [J].
SHAHGHOLIAN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (04) :1097-1100
[10]  
SHAPIRO HS, 1992, SCHWARZ FUNCTION ITS