The Newton transformation and new integral formulae for foliated manifolds

被引:17
作者
Andrzejewski, Krzysztof [1 ,2 ]
Walczak, Pawel G. [1 ,3 ]
机构
[1] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[2] Univ Lodz, Dept Theoret Phys 2, PL-90236 Lodz, Poland
[3] Univ Lodz, Fac Math & Informat, PL-90238 Lodz, Poland
关键词
Foliations; Newton transformation; Shape operator; rth mean curvature; MEAN-CURVATURE HYPERSURFACES; CONSTANT CURVATURE; WALCZAK FORMULA; SPACES; LEAVES;
D O I
10.1007/s10455-009-9175-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we show that the Newton transformations of the shape operator can be applied successfully to foliated manifolds. Using these transformations, we generalize known integral formulae (due to Brito-Langevin-Rosenberg, Ranjan, Walczak, etc.) for foliations of codimension one. We obtain integral formulae involving rth mean curvature of the second fundamental form of a foliation, the Jacobi operator in the direction orthogonal to the foliation, and their products. We apply our formulae to totally umbilical foliations and foliations whose leaves have constant second order mean curvature.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 22 条
[1]  
Alías LJ, 2002, REV MAT IBEROAM, V18, P431
[2]   Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker spacetimes [J].
Alias, Luis J. ;
Colares, A. Gervasio .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 :703-729
[3]   Constant higher-order mean curvature hypersurfaces in Riemannian spaces [J].
Alias, Luis J. ;
De Lira, Jorge H. S. ;
Malacarne, J. Miguel .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (04) :527-562
[4]   AVERAGE GAUSSIAN CURVATURE OF LEAVES OF FOLIATIONS [J].
ASIMOV, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (01) :131-133
[5]  
Baird P., 2003, London Math. Soc. Monogr. (N.S.), V29
[6]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[7]   FOLIATIONS BY HYPERSURFACES WITH CONSTANT MEAN-CURVATURE [J].
BARBOSA, JLM ;
KENMOTSU, K ;
OSHIKIRI, G .
MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (01) :97-108
[8]   COMPACT GRAPHS OVER A SPHERE OF CONSTANT SECOND ORDER MEAN CURVATURE [J].
Barros, A. ;
Sousa, P. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) :3105-3114
[9]   Holomorphicity and the Walczak formula on Sasakian manifolds [J].
Brinzanescu, Vasile ;
Slobodeanu, Radu .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 57 (01) :193-207
[10]  
BRITO F, 1981, J DIFFER GEOM, V16, P19