SYMMETRIC SEMICLASSICAL STATES TO A MAGNETIC NONLINEAR SCHRODINGER EQUATION VIA EQUIVARIANT MORSE THEORY

被引:4
作者
Cingolani, Silvia [1 ]
Clapp, Monica [2 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
关键词
Nonlinear Schrodinger equation; magnetic field; equivariant Morse theory; symmetric semiclassical states; ELECTROMAGNETIC-FIELDS; ELLIPTIC PROBLEMS; EXISTENCE; LIMIT;
D O I
10.3934/cpaa.2010.9.1263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the magnetic NLS equation (-epsilon i del + A(x))(2) u + V(x)u = K(x)|u|(p-2)u, x is an element of R-N, where N >= 3, 2 < p < 2* : = 2N/(N - 2), A : R-N --> R-N is a magnetic potential and V : R-N --> R, K : R-N --> R are bounded positive potentials. We consider a group G of orthogonal transformations of R-N and we assume that A is G-equivariant and V, K are G-invariant. Given a group homomorphism tau : G --> S-1 into the unit complex numbers we look for semiclassical solutions u(epsilon): R-N --> C to the above equation which satisfy u(epsilon)(gx) = tau(g)u(epsilon)(x) for all g is an element of G, x is an element of R-N. Using equivariant Morse theory we obtain a lower bound for the number of solutions of this type.
引用
收藏
页码:1263 / 1281
页数:19
相关论文
共 29 条
[1]   Semiclassical states of nonlinear Schrodinger equations [J].
Ambrosetti, A ;
Badiale, M ;
Cingolani, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 140 (03) :285-300
[2]  
[Anonymous], 1987, Transformation Groups
[3]  
[Anonymous], PNLDE
[4]  
[Anonymous], 1997, Adv. Diff. Equats
[5]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[6]  
Bartsch T, 2006, ADV DIFFERENTIAL EQU, V11, P781
[7]   Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrodinger equation [J].
Bartsch, Thomas ;
Clapp, Monica ;
Weth, Tobias .
MATHEMATISCHE ANNALEN, 2007, 338 (01) :147-185
[8]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   On the Schrodinger equation involving a critical Sobolev exponent and magnetic field [J].
Chabrowski, J ;
Szulkin, A .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (01) :3-21