Multilinear singular integrals and commutators in variable exponent Lebesgue spaces

被引:33
作者
Huang Ai-wu [1 ]
Xu Jing-shi [1 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
关键词
Multilinear singular integral; commutator; variable exponent; Lebesgue space; BMO function; maximal operator; L-P SPACES; MAXIMAL-FUNCTION; OPERATORS;
D O I
10.1007/s11766-010-2167-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundedness of multilinear singular integrals and their commutators from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces are obtained. The vector-valued case is also considered.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 14 条
[1]  
[Anonymous], HARMONIC ANAL
[2]  
[Anonymous], 2001, Expo. Math.
[3]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[4]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[5]   Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals [J].
Curbera, Guillermo P. ;
Garcia-Cuerva, Jose ;
Martell, Jose Maria ;
Perez, Carlos .
ADVANCES IN MATHEMATICS, 2006, 203 (01) :256-318
[6]   Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces [J].
Diening, L .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08) :657-700
[7]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[8]   Multilinear Calderon-Zygmund theory [J].
Grafakos, L ;
Torres, RH .
ADVANCES IN MATHEMATICS, 2002, 165 (01) :124-164
[9]  
KOVACIK O, 1991, CZECH MATH J, V41, P592
[10]   Hardy-Littlewood maximal operator on Lp(x)(R) [J].
Nekvinda, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02) :255-265