Radio Propagation Prediction Model Using Convolutional Neural Networks by Deep Learning

被引:0
作者
Imai, T. [1 ]
Kitao, K. [1 ]
Inomata, M. [1 ]
机构
[1] NTT DOCOMO INC, 5G Labs, Yokosuka, Kanagawa, Japan
来源
2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP) | 2019年
关键词
deep learning; convolutional neural network; machine learning; radio propagation prediction;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, advancement of artificial intelligence has been remarkable, and many applied researches are attracting attention now. Most of them are based on deep learning. Here, we have proposed radio propagation prediction model using convolutional neural networks (CNN) by deep learning. This paper explains our proposed model in detail, and clarifies its performance by evaluating behaviors for map-parameters input to CNN.
引用
收藏
页数:5
相关论文
共 7 条
[1]   A UHF Path Loss Model Using Learning Machine for Heterogeneous Networks [J].
Ayadi, M. ;
Ben Zineb, A. ;
Tabbane, S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (07) :3675-3683
[2]  
Imai T., 2018, AP2017165 IEICE, P81
[3]   A Survey of Efficient Ray-Tracing Techniques for Mobile Radio Propagation Analysis [J].
Imai, Tetsuro .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2017, E100B (05) :666-679
[4]   Path loss prediction formula in urban area for the Fourth-Generation Mobile Communication Systems [J].
Kitao, Koshiro ;
Ichitsubo, Shinichi .
IEICE TRANSACTIONS ON COMMUNICATIONS, 2008, E91B (06) :1999-2009
[5]  
Kuno N., 2018, AP201821 IEICE, P47
[6]   Macrocell Path-Loss Prediction Using Artificial Neural Networks [J].
Ostlin, Erik ;
Zepernick, Hans-Jurgen ;
Suzuki, Hajime .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (06) :2735-2747
[7]   A survey of various propagation models for mobile communication [J].
Sarkar, TK ;
Ji, Z ;
Kim, KJ ;
Medouri, A ;
Salazar-Palma, M .
IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2003, 45 (03) :51-82