[1] NTT DOCOMO INC, 5G Labs, Yokosuka, Kanagawa, Japan
来源:
2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP)
|
2019年
关键词:
deep learning;
convolutional neural network;
machine learning;
radio propagation prediction;
D O I:
暂无
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Recently, advancement of artificial intelligence has been remarkable, and many applied researches are attracting attention now. Most of them are based on deep learning. Here, we have proposed radio propagation prediction model using convolutional neural networks (CNN) by deep learning. This paper explains our proposed model in detail, and clarifies its performance by evaluating behaviors for map-parameters input to CNN.
机构:
NTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, JapanNTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, Japan
Kitao, Koshiro
;
Ichitsubo, Shinichi
论文数: 0引用数: 0
h-index: 0
机构:
NTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, JapanNTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, Japan
机构:
NTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, JapanNTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, Japan
Kitao, Koshiro
;
Ichitsubo, Shinichi
论文数: 0引用数: 0
h-index: 0
机构:
NTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, JapanNTT DoCoMo Inc, Radio Access Network Dev Dept, Yokosuka, Kanagawa 2398536, Japan