A GENERALIZATION OF WINTERNITZ'S THEOREM AND ITS DISCRETE VERSION

被引:1
作者
Shyntar, Alexandra [1 ]
Yaskin, Vladyslav [2 ]
机构
[1] Univ Alberta, Edmonton, AB T6G 2G1, Canada
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Convex body; centroid; lattice set; GRUNBAUMS INEQUALITY; SECTIONS;
D O I
10.1090/proc/15465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a convex body in the plane. Cut K by a line passing through its centroid. It is a well-known result, due to Winternitz, that the areas of the resulting two pieces are at least 4/9 times the area of K and at most 5/9 times the area of K. We generalize this inequality to the case when the body is cut by a line not passing through the centroid. As an application we obtain a discrete version of Winternitz's theorem.
引用
收藏
页码:3089 / 3104
页数:16
相关论文
共 13 条
  • [1] A discrete version of Koldobsky's slicing inequality
    Alexander, Matthew
    Henk, Martin
    Zvavitch, Artem
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2017, 222 (01) : 261 - 278
  • [2] Beck Matthias, 2007, COMPUTING CONTINUOUS
  • [3] Blaschke Wilhelm., 1923, AFFINE DIFFERENTIALG
  • [4] Bonnesen T., 1987, THEORY CONVEX BODIES
  • [5] ON THE VOLUME OF SECTIONS OF A CONVEX BODY BY CONES
    Fradelizi, Matthieu
    Meyer, Mathieu
    Yaskin, Vlad
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (07) : 3153 - 3164
  • [6] GARDNER R. J., 2006, ENCY MATH ITS APPL, V58
  • [7] Sums, projections, and sections of lattice sets, and the discrete covariogram
    Gardner, RJ
    Gronchi, P
    Zong, CM
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (03) : 391 - 409
  • [8] Grunbaum B., 1960, Pacific J. Math., V10, P1257
  • [9] Grunbaum-type inequality for log-concave functions
    Meyer, Mathieu
    Nazarov, Fedor
    Ryabogin, Dmitry
    Yaskin, Vladyslav
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (04) : 745 - 752
  • [10] Grunbaum's inequality for sections
    Myroshnychenko, S.
    Stephen, M.
    Zhang, N.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) : 2516 - 2537