Independence of work hardening and precipitation strengthening in a nanocluster strengthened steel

被引:30
|
作者
Xu, S. S. [1 ]
Zhao, Y. [1 ]
Tong, X. [2 ,3 ]
Guo, H. [1 ]
Chen, L. [4 ,5 ]
Sun, L. W. [4 ,5 ]
Peng, M. [4 ,5 ]
Chen, Mj. [1 ]
Chen, D. [1 ]
Cui, Y. [1 ]
Sun, G. A. [4 ,5 ]
Peng, S. M. [4 ,5 ]
Zhang, Z. W. [1 ]
机构
[1] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Minist Educ, Key Lab Superlight Mat & Surface Technol, Harbin 150001, Peoples R China
[2] Oak Ridge Natl Lab, Instrument & Source Div, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[4] China Acad Engn Phys, Key Lab Neutron Phys, Mianyang 621999, Peoples R China
[5] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621999, Peoples R China
基金
美国能源部;
关键词
Nanocluster strengthened steel; Small-angle neutron scattering; Work hardening; Precipitation strengthening; COPPER PRECIPITATION; CU; BEHAVIOR; MICROSTRUCTURE; SIMULATION; IRON; MO;
D O I
10.1016/j.jallcom.2017.04.143
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Work hardening and precipitation strengthening are two important strengthening methods that closely associate with dislocation density. Here, a new class of nanocluster strengthened steel with a tensile strength of -2.02 GPa and an elongation of -7% is developed through a combination of work hardening and precipitation strengthening. The work hardening is strongly dependent on the dislocation density induced by thermomechanical treatments while there is no effect for dislocation density on precipitation strengthening. The work hardening and precipitation strengthening are independent and can be controlled separately. The strengthening effects of nanoscale precipitates are quantitatively analyzed and assessed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:573 / 578
页数:6
相关论文
共 50 条
  • [1] Tensile Work Hardening Modeling of Precipitation Strengthened Nb-Microalloyed Steels
    Amaia Iza-Mendia
    Denis Jorge-Badiola
    Isabel Gutiérrez
    Metallurgical and Materials Transactions A, 2017, 48 : 2943 - 2948
  • [2] Tensile Work Hardening Modeling of Precipitation Strengthened Nb-Microalloyed Steels
    Iza-Mendia, Amaia
    Jorge-Badiola, Denis
    Gutierrez, Isabel
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (06): : 2943 - 2948
  • [3] A study of the strengthening mechanisms in the novel precipitation-hardening KeyLos 2001 steel
    Faccoli, M.
    Ghidini, A.
    Roberti, R.
    International Journal of Microstructure and Materials Properties, 2008, 3 (2-3) : 424 - 438
  • [4] THE STRENGTHENING OF A MEDIUM CARBON-STEEL THROUGH SECONDARY HARDENING AND THE PRECIPITATION OF INTERMETALLIC COMPOUNDS
    CHURCHILL, RK
    GARRISON, WM
    JOURNAL OF METALS, 1980, 32 (08): : 46 - 46
  • [5] STRENGTHENING OF ULTRA-LOW CARBON NI-CR STEEL BY PRECIPITATION HARDENING
    KIMURA, I
    YADA, H
    HONDA, M
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1972, 12 (04) : 323 - &
  • [6] Formation of vacancies in a nanocluster-strengthened ferritic steel
    Liu Feng
    Liu Yong
    Liu Donghua
    Wang Yan
    Zhao Dapeng
    Zhang Liujie
    MATERIALS LETTERS, 2011, 65 (02) : 253 - 255
  • [7] STRENGTHENING OF AUSTENITIC STAINLESS STEELS BY PRECIPITATION HARDENING
    MALYSHEV, KA
    SAGARADZ.VV
    PHYSICS OF METALS AND METALLOGRAPHY-USSR, 1968, 25 (05): : 135 - +
  • [8] STRENGTHENING OF ANSTENITIC NONMAGNETIC ALLOYS WITH PRECIPITATION HARDENING
    SAGARADZE, VV
    USPEKHI FIZICHESKIKH NAUK, 1982, 138 (02): : 336 - 337
  • [9] Multicomponent Precipitation and Strengthening in Intermetallic-Strengthened Alloys
    Fang, J. Y. C.
    Liu, W. H.
    Yang, T.
    Wu, Y.
    Jiao, Z. B.
    FRONTIERS IN MATERIALS, 2022, 9
  • [10] Multicomponent Precipitation and Strengthening in Intermetallic-Strengthened Alloys
    Fang, J.Y.C.
    Liu, W.H.
    Yang, T.
    Wu, Y.
    Jiao, Z.B.
    Frontiers in Materials, 2022, 9