How gas flow design can influence the performance of a DBD plasma reactor for dry reforming of methane

被引:37
作者
Uytdenhouwen, Y. [1 ,2 ]
Hereijgers, J. [3 ]
Breugelmans, T. [3 ,4 ]
Cool, P. [2 ]
Bogaerts, A. [1 ]
机构
[1] Univ Antwerp, Dept Chem, Res Grp PLASMANT, Univ Pl 1, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Dept Chem, Res Grp LADCA, Univ Pl 1, B-2610 Antwerp, Belgium
[3] Univ Antwerp, Res Grp Appl Electrochem & Catalysis, Univ Pl 1, B-2610 Antwerp, Belgium
[4] VITO, Separat & Convers Technol, Boeretang 200, B-2400 Mol, Belgium
关键词
Plasma; Dielectric barrier discharge; Dry reforming of methane; Flow pattern; Mixing pattern; Reactor design; DIELECTRIC-BARRIER-DISCHARGE; PRESSURE GLOW-DISCHARGE; GLIDING ARC PLASMATRON; NONTHERMAL PLASMA; PACKING MATERIALS; MICROWAVE PLASMA; CO2; DISSOCIATION; CONVERSION; AMMONIA; CATALYSIS;
D O I
10.1016/j.cej.2020.126618
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
DBD plasma reactors are commonly used in a static 'one inlet - one outlet' design that goes against reactor design principles for multi-component reactions, such as dry reforming of methane (DRM). Therefore, in this paper we have developed a novel reactor design, and investigated how the shape and size of the reaction zone, as well as gradual gas addition, and the method of mixing CO2 and CH4 can influence the conversion and product composition of DRM. Even in the standard 'one inlet - one outlet' design, the direction of the gas flow (i.e. short or long path through the reactor, which defines the gas velocity at fixed residence time), as well as the dimensions of the reaction zone and the power delivery to the reactor, largely affect the performance. Using gradual gas addition and separate plasma activation zones for the individual gases give increased conversions within the same operational parameters, by optimising mixing ratios and kinetics. The choice of the main (pre-activated) gas and the direction of gas flow largely affect the conversion and energy cost, while the gas inlet position during separate addition only influences the product distribution.
引用
收藏
页数:15
相关论文
共 54 条
[1]   Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study [J].
Aerts, Robby ;
Somers, Wesley ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2015, 8 (04) :702-716
[2]  
Bai MD, 2000, PLASMA CHEM PLASMA P, V20, P511
[3]   Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure [J].
Bai, MD ;
Zhang, ZT ;
Bai, XY ;
Bai, MD ;
Ning, W .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2003, 31 (06) :1285-1291
[4]   Modeling of CO2 Splitting in a Microwave Plasma: How to Improve the Conversion and Energy Efficiency [J].
Berthelot, Antonin ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (15) :8236-8251
[5]   The 2020 plasma catalysis roadmap [J].
Bogaerts, Annemie ;
Tu, Xin ;
Whitehead, J. Christopher ;
Centi, Gabriele ;
Lefferts, Leon ;
Guaitella, Olivier ;
Azzolina-Jury, Federico ;
Kim, Hyun-Ha ;
Murphy, Anthony B. ;
Schneider, William F. ;
Nozaki, Tomohiro ;
Hicks, Jason C. ;
Rousseau, Antoine ;
Thevenet, Frederic ;
Khacef, Ahmed ;
Carreon, Maria .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (44)
[6]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[7]   Plasma based CO2 and CH4 conversion: A modeling perspective [J].
Bogaerts, Annemie ;
De Bie, Christophe ;
Snoeckx, Ramses ;
Kozak, Tomas .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[8]   Plasma-driven dissociation of CO2 for fuel synthesis [J].
Bongers, Waldo ;
Bouwmeester, Henny ;
Wolf, Bram ;
Peeters, Floran ;
Welzel, Stefan ;
van den Bekerom, Dirk ;
den Harder, Niek ;
Goede, Adelbert ;
Graswinckel, Martijn ;
Groen, Pieter Willem ;
Kopecki, Jochen ;
Leins, Martina ;
van Rooij, Gerard ;
Schulz, Andreas ;
Walker, Matthias ;
van de Sanden, Richard .
PLASMA PROCESSES AND POLYMERS, 2017, 14 (06)
[9]   Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor [J].
Butterworth, T. ;
Elder, R. ;
Allen, R. .
CHEMICAL ENGINEERING JOURNAL, 2016, 293 :55-67
[10]   Dry Reforming of Methane in a Gliding Arc Plasmatron: Towards a Better Understanding of the Plasma Chemistry [J].
Cleiren, Emelie ;
Heijkers, Stijn ;
Ramakers, Marleen ;
Bogaerts, Annemie .
CHEMSUSCHEM, 2017, 10 (20) :4025-4036