Polar Ultrathin Self-Doping Carbon Nitride Nanosheets with Intrinsic Polysulfide Adsorption for High Performance Lithium-Sulfur Batteries

被引:23
作者
Gong, Yi [1 ]
Fu, Chaopeng [2 ]
Dong, Anping [2 ]
Zhou, Haihui [1 ]
Li, Huanxin [1 ]
Kuang, Yafei [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption; carbon nitride; lithium-sulfur batterie; materials science; nanostructures; CATHODE; G-C3N4; CATALYSTS; NITROGEN; EXFOLIATION; COMPOSITE; DESIGN; REDOX; LIFE;
D O I
10.1002/batt.201800040
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-sulfur (Li-S) batteries are promising for next-generation electrochemical energy storage due to their high energy density and low cost. Here, we introduce light-weight polar carbon selfdoping C3N4 nanosheets (C-CNN) as sulfur host for the fabrication of high performance Li-S batteries. The role of carbon doping in boosting the electrical conductivity of C-CNN is revealed by electrochemical impedance spectroscopy and electrical conductivity measurements. The strong chemical interactions between C-CNN and polysulfides are investigated by adsorption and post-mortem X-ray photoelectron spectroscopy analysis. Benefiting from the high surface area, enhanced electrical conductivity and high content of active N species (56.7 at%) in C-CNN, the strong chemical interactions between C-CNN and polysulfides can be fully exploited to minimize the shuttle effect and achieve long cycle life of Li-S batteries. As a result, the C-CNN/S cathode delivers a high specific capacity of 1050 mAhg(-1), good rate capability and excellent cycling stability with a low capacity decay of 0.07% per cycle at 1 C over 500 cycles, showing better performance than nitrogen-doped graphene. A performance comparison with the literature also shows that C-CNN is one of the most promising nitrogen-containing carbon materials for long cycle life Li-S batteries.
引用
收藏
页码:192 / 201
页数:10
相关论文
共 49 条
  • [1] Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes
    Chen, Liang
    Feng, Jianrui
    Zhou, Haihui
    Fu, Chaopeng
    Wang, Guichang
    Yang, Liming
    Xu, Chenxi
    Chen, Zhongxue
    Yang, Wenji
    Kuang, Yafei
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (16) : 7403 - 7415
  • [2] Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
    Coleman, Jonathan N.
    Lotya, Mustafa
    O'Neill, Arlene
    Bergin, Shane D.
    King, Paul J.
    Khan, Umar
    Young, Karen
    Gaucher, Alexandre
    De, Sukanta
    Smith, Ronan J.
    Shvets, Igor V.
    Arora, Sunil K.
    Stanton, George
    Kim, Hye-Young
    Lee, Kangho
    Kim, Gyu Tae
    Duesberg, Georg S.
    Hallam, Toby
    Boland, John J.
    Wang, Jing Jing
    Donegan, John F.
    Grunlan, Jaime C.
    Moriarty, Gregory
    Shmeliov, Aleksey
    Nicholls, Rebecca J.
    Perkins, James M.
    Grieveson, Eleanor M.
    Theuwissen, Koenraad
    McComb, David W.
    Nellist, Peter D.
    Nicolosi, Valeria
    [J]. SCIENCE, 2011, 331 (6017) : 568 - 571
  • [3] Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries
    Cui, Zhiming
    Zu, Chenxi
    Zhou, Weidong
    Manthiram, Arumugam
    Goodenough, John B.
    [J]. ADVANCED MATERIALS, 2016, 28 (32) : 6926 - +
  • [4] Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4
    Dong, Guohui
    Zhao, Kun
    Zhang, Lizhi
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (49) : 6178 - 6180
  • [5] Porous C3N4 Nanolayers@N-Graphene Films as Catalyst Electrodes for Highly Efficient Hydrogen Evolution
    Duan, Jingjing
    Chen, Sheng
    Jaroniec, Mietek
    Qiao, Shi Zhang
    [J]. ACS NANO, 2015, 9 (01) : 931 - 940
  • [6] The Effective Design of a Polysulfide-Trapped Separator at the Molecular Level for High Energy Density Li-S Batteries
    Fan, Chao-Ying
    Yuan, Hai-Yan
    Li, Huan-Huan
    Wang, Hai-Feng
    Li, Wen-Liang
    Sun, Hai-Zhu
    Wu, Xing-Long
    Zhang, Jing-Ping
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (25) : 16108 - 16115
  • [7] MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    He, Xiao
    Khattak, Abdul Muqsit
    Khan, Niaz Ali
    Liang, Bin
    Iqbal, Azhar
    Wang, Jinxin
    Sin, Haksong
    Li, Lianshan
    Tang, Zhiyong
    [J]. ADVANCED MATERIALS, 2017, 29 (21)
  • [8] Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution
    Guo, Shien
    Deng, Zhaopeng
    Li, Mingxia
    Jiang, Baojiang
    Tian, Chungui
    Pan, Qingjiang
    Fu, Honggang
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) : 1830 - 1834
  • [9] Hou T. Z., 2017, Angew. Chem, V129, P8290
  • [10] Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium-Sulfur Batteries
    Hou, Ting-Zheng
    Chen, Xiang
    Peng, Hong-Jie
    Huang, Jia-Qi
    Li, Bo-Quan
    Zhang, Qiang
    Li, Bo
    [J]. SMALL, 2016, 12 (24) : 3283 - 3291