Fast Estimation of Sparse Quantum Noise

被引:30
作者
Harper, Robin [1 ]
Yu, Wenjun [2 ]
Flammia, Steven T. [3 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[2] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[3] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 01期
基金
澳大利亚研究理事会;
关键词
Quantum noise;
D O I
10.1103/PRXQuantum.2.010322
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As quantum computers approach the fault-tolerance threshold, diagnosing and characterizing the noise on large-scale quantum devices is increasingly important. One of the most important classes of noise channels is the class of Pauli channels, for reasons of both theoretical tractability and experimental relevance. Here we present a practical algorithm for estimating the s nonzero Pauli error rates in an s-sparse, n-qubit Pauli noise channel, or more generally the s largest Pauli error rates. The algorithm comes with rigorous recovery guarantees and uses only O(n(2)) measurements, O(sn(2)) classical processing time, and Clifford quantum circuits. We experimentally validate a heuristic version of the algorithm that uses simplified Clifford circuits on data from an IBM 14-qubit superconducting device and our open-source implementation. These data show that accurate and precise estimation of the probability of arbitrary-weight Pauli errors is possible even when the signal is 2 orders of magnitude below the measurement noise floor.
引用
收藏
页数:26
相关论文
共 51 条
[1]   Fault-tolerant quantum computation against biased noise [J].
Aliferis, Panos ;
Preskill, John .
PHYSICAL REVIEW A, 2008, 78 (05)
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   Learning the dynamics of open quantum systems from their steady states [J].
Bairey, Eyal ;
Guo, Chu ;
Poletti, Dario ;
Lindner, Netanel H. ;
Arad, Itai .
NEW JOURNAL OF PHYSICS, 2020, 22 (03)
[4]   Learning a Local Hamiltonian from Local Measurements [J].
Bairey, Eyal ;
Arad, Itai ;
Lindner, Netanel H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[5]   Quantum Error Correction Decoheres Noise [J].
Beale, Stefanie J. ;
Wallman, Joel J. ;
Gutierrez, Mauricio ;
Brown, Kenneth R. ;
Laflamme, Raymond .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[6]   Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography [J].
Blume-Kohout, Robin ;
Gamble, John King ;
Nielsen, Erik ;
Rudinger, Kenneth ;
Mizrahi, Jonathan ;
Fortier, Kevin ;
Maunz, Peter .
NATURE COMMUNICATIONS, 2017, 8
[7]  
Bravyi S., 2020, ARXIV200309412QUANTP ARXIV200309412QUANTP
[8]  
Chuang IL, 1997, J MOD OPTIC, V44, P2455, DOI 10.1080/095003497152609
[9]   Efficient quantum state tomography [J].
Cramer, Marcus ;
Plenio, Martin B. ;
Flammia, Steven T. ;
Somma, Rolando ;
Gross, David ;
Bartlett, Stephen D. ;
Landon-Cardinal, Olivier ;
Poulin, David ;
Liu, Yi-Kai .
NATURE COMMUNICATIONS, 2010, 1
[10]  
Dumitrescu E. F., 2019, ARXIV191111092QUANTP ARXIV191111092QUANTP