A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode

被引:205
作者
Zheng, Yuheng [1 ,2 ]
Wang, Yuesheng [2 ]
Lu, Yaxiang [2 ]
Hu, Yong-Sheng [2 ]
Li, Ju [1 ,3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Sch Phys S, Key Lab Renewable Energy,Inst Phys,Chinese Acad S, Beijing 100190, Peoples R China
[3] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
Hard carbon; Half-cell; Full-cell; Sodium-ion battery; HIGH-CAPACITY CATHODE; COULOMBIC EFFICIENCY; STORAGE; LITHIUM; INTERCALATION; INSERTION; FIBERS;
D O I
10.1016/j.nanoen.2017.07.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon anode materials for sodium-ion batteries (SIB) have usually been tested in half-cells by cycling between 0-2 V, and is believed to exhibit low rate capability. However, we find that the specific capacity, the rate performance, and the cycling performance may all be severely underestimated with the traditional half-cell cycling evaluation method, due to premature truncation of part II of the capacity (part I is "sloping", part II is "plateauing", while part III is Na metal deposition). Here we introduce a sodium-matched SIB full-cell architecture, with newly developed hard carbon derived from macadamia shell (MHC) as anode and Na[Cu1/9Ni2/9Fe1/3Mn1/3]O-2 (NCNFM) as the cathode material, with anode/cathode areal capacity ratio of 1.02-1.04. Our carefully balanced full-cells exhibit a cell-level theoretical specific energy of 215 Wh kg(-1) at C/10 and 186 Wh kg(-1) at 1C based on cathode-active and anode-active material weights, and an outstanding capacity retention of 70% after 1300 cycles (similar to 2000 h). Traditional half-cell test (THT) of MHC using superabundant Na metal counter electrode shows only 51.7 mAh g(-1) capacity at 1C, and appears to die in no more than 100 h due to low open-circuit voltage slope and large polarization. A revised half-cell test (RHT) which shows much better agreements with full-cell test results, delivers a specific capacity of 314 mAh g(-1), with an initial Coulombic efficiency of similar to 91.4%, which is comparable to that of graphite anode in lithium-ion batteries.
引用
收藏
页码:489 / 498
页数:10
相关论文
共 68 条
[1]   The preparation of activated carbon from macadamia nutshell by chemical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1997, 35 (12) :1723-1732
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Rechargeable Batteries: Grasping for the Limits of Chemistry [J].
Berg, Erik J. ;
Villevieille, Claire ;
Streich, Daniel ;
Trabesinger, Sigita ;
Novak, Petr .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2468-A2475
[4]   Investigating dendrites and side reactions in sodium-oxygen batteries for improved cycle lives [J].
Bi, Xuanxuan ;
Ren, Xiaodi ;
Huang, Zhongjie ;
Yu, Mingzhe ;
Kreidler, Eric ;
Wu, Yiying .
CHEMICAL COMMUNICATIONS, 2015, 51 (36) :7665-7668
[5]   Na0.67Mn1-xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries [J].
Billaud, Juliette ;
Singh, Gurpreet ;
Armstrong, A. Robert ;
Gonzalo, Elena ;
Roddatis, Vladimir ;
Armand, Michel ;
Rojob, Teofilo ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) :1387-1391
[6]   New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon [J].
Bommier, Clement ;
Surta, Todd Wesley ;
Dolgos, Michelle ;
Ji, Xiulei .
NANO LETTERS, 2015, 15 (09) :5888-5892
[7]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[8]   Size-Tunable Olive-Like Anatase TiO2 Coated with Carbon as Superior Anode for Sodium-Ion Batteries [J].
Chen, Jun ;
Zhang, Yan ;
Zou, Guoqiang ;
Huang, Zhaodong ;
Li, Simin ;
Liao, Hanxiao ;
Wang, Jufeng ;
Hou, Hongshuai ;
Ji, Xiaobo .
SMALL, 2016, 12 (40) :5554-5563
[9]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[10]   Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries [J].
Chen, Taiqiang ;
Pan, Likun ;
Lu, Ting ;
Fu, Conglong ;
Chua, Daniel H. C. ;
Sun, Zhuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) :1263-1267