Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system

被引:53
作者
Zayernouri, Mohsen [1 ,2 ]
Matzavinos, Anastasios [3 ,4 ]
机构
[1] Michigan State Univ, Dept Computat Math Sci & Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
[3] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[4] ETH, Computat Sci & Engn Lab, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
Fractional multi-step time integration; Implicit-explicit (IMEX) scheme; Chemotaxis; Fractional collocation; Jacobi poly-fractonomial; SPECTRAL ELEMENT METHODS; NUMERICAL-SOLUTION; BLOW-UP; DIFFUSION; SPACE; MODEL; TIME; STABILITY; EXISTENCE; EQUATION;
D O I
10.1016/j.jcp.2016.04.041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We first formulate a fractional class of explicit Adams-Bashforth (A-B) and implicit Adams-Moulton (A-M) methods of first- and second-order accuracy for the time-integration of (C)(0)D(t)(tau)u(x, t) = g(t; u), tau is an element of(0, 1], where D-C(0)t(tau) denotes the fractional derivative in the Caputo sense. In this fractional setting and in contrast to the standard Adams methods, an extra history load term emerges and the associated weight coefficients are tau-dependent. However when tau = 1, the developed schemes reduce to the well-known A-B and A-M methods with standard coefficients. Hence, in terms of scientific computing, our approach constitutes a minimal modification of the existing Adams libraries. Next, we develop an implicit-explicit (IMEX) splitting scheme for linear and nonlinear fractional PDEs of a general advection-reaction-diffusion type, and we apply our scheme to the time-space fractional Keller-Segel chemotaxis system. In this context, we evaluate the nonlinear advection term explicitly, employing the fractional A-B method in the prediction step, and we treat the corresponding diffusion term implicitly in the correction step using the fractional A-M scheme. Moreover, we perform the corresponding spatial discretization by employing an efficient and spectrally-accurate fractional spectral collocation method. Our numerical experiments exhibit the efficiency of the proposed IMEX scheme in solving nonlinear fractional PDEs. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 58 条
[1]  
[Anonymous], NEW LEGENDRE SPECTRA
[2]  
[Anonymous], ABSTR APPL AN
[3]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], 2007, Spectral methods for time-dependent prob- lems
[6]  
Baffet D. H., 2016, J SCI COMPUT
[7]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[8]   A shifted Legendre spectral method for fractional-order multi-point boundary value problems [J].
Bhrawy, Ali H. ;
Al-Shomrani, Mohammed M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[9]  
Blank L., 1996, Numerical Analysis Report
[10]   The one-dimensional Keller-Segel model with fractional diffusion of cells [J].
Bournaveas, Nikolaos ;
Calvez, Vincent .
NONLINEARITY, 2010, 23 (04) :923-935