SOME DYNAMIC INEQUALITIES OF HARDY TYPE ON TIME SCALES

被引:9
作者
Saker, S. H. [1 ]
O'Regan, Donal [2 ]
Agarwal, R. P. [3 ,4 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[3] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
[4] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 03期
关键词
Hardy's inequality; time scales;
D O I
10.7153/mia-17-89
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove some new dynamic inequalities of Hardy type on time scales. The main results will be proved using algebraic inequalities, Holder inequality and Keller's chain rule on time scales.
引用
收藏
页码:1183 / 1199
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 1979, CAN MATH BULLETIN, DOI DOI 10.4153/CMB-1979-023-5
  • [2] [Anonymous], AI CUZA IASI
  • [3] Beesack P.R., 1961, Pac. J. Math., V11, P39, DOI DOI 10.2140/PJM.1961.11.39
  • [4] Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
  • [5] Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
  • [6] Note on a theorem of Hilbert.
    Hardy, GH
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1920, 6 : 314 - 317
  • [7] Hardy GH., 1928, Messenger Math, V57, P12
  • [8] Hardy Godfrey Harold, 1952, Inequalities, V2nd
  • [9] Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
  • [10] ON SOME INEQUALITIES FOR FOURIER SERIES
    IZUMI, M
    IZUMI, SI
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1968, 21 : 277 - &