Nitric oxide density distributions in the effluent of an RF argon APPJ: effect of gas flow rate and substrate

被引:58
作者
Iseni, S. [1 ,2 ]
Zhang, S. [3 ]
van Gessel, A. F. H. [3 ]
Hofmann, S. [3 ]
van Ham, B. T. J. [3 ]
Reuter, S. [1 ,2 ]
Weltmann, K-D
Bruggeman, P. J. [3 ,4 ]
机构
[1] Ctr Innovat Competence Plasmatis, D-17489 Greifswald, Germany
[2] Leibniz Inst Plasma Sci & Technol INP, D-17489 Greifswald, Germany
[3] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
[4] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
关键词
atmospheric pressure plasma jets; nitric oxide; laser induced fluorescence; molecular beam mass spectrometry; spectroscopy; plasma medicine; PLASMA; NO; A2-SIGMA+;
D O I
10.1088/1367-2630/16/12/123011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effluent of an RF argon atmospheric pressure plasma jet, the so-called kinpen, is investigated with focus on the nitric-oxide (NO) distribution for laminar and turbulent flow regimes. An additional dry air gas curtain is applied around the plasma effluent to prevent interaction with the ambient humid air. By means of laser-induced fluorescence (LIF) the absolute spatially resolved NO density is measured as well as the rotational temperature and the air concentration. While in the laminar case, the transport of NO is attributed to thermal diffusion; in the turbulent case, turbulent mixing is responsible for air diffusion. Additionally, measurements with a molecular beam mass-spectrometer (MBMS) absolutely calibrated for NO are performed and compared with the LIF measurements. Discrepancies are explained by the contribution of the NO2 and N2O to the MBMS NO signal. Finally, the effect of a conductive substrate in front of the plasma jet on the spatial distribution of NO and air diffusion is also investigated.
引用
收藏
页数:22
相关论文
共 54 条
[1]   Effects of Low Temperature Plasmas on Cancer Cells [J].
Barekzi, Nazir ;
Laroussi, Mounir .
PLASMA PROCESSES AND POLYMERS, 2013, 10 (12) :1039-1050
[2]   Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells [J].
Bekeschus, S. ;
Kolata, J. ;
Winterbourn, C. ;
Kramer, A. ;
Turner, R. ;
Weltmann, K. D. ;
Broeker, B. ;
Masur, K. .
FREE RADICAL RESEARCH, 2014, 48 (05) :542-549
[3]   Gas temperature determination from rotational lines in non-equilibrium plasmas: a review [J].
Bruggeman, P. J. ;
Sadeghi, N. ;
Schram, D. C. ;
Linss, V. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (02)
[4]   Impact of non-thermal plasma treatment on MAPK signaling pathways of human immune cell lines [J].
Bundscherer, Lena ;
Wende, Kristian ;
Ottmueller, Katja ;
Barton, Annemarie ;
Schmidt, Anke ;
Bekeschus, Sander ;
Hasse, Sybille ;
Weltmann, Klaus-Dieter ;
Masur, Kai ;
Lindequist, Ulrike .
IMMUNOBIOLOGY, 2013, 218 (10) :1248-1255
[5]   HIGH-TEMPERATURE QUENCHING CROSS-SECTIONS FOR NITRIC-OXIDE LASER-INDUCED FLUORESCENCE MEASUREMENTS [J].
DRAKE, MC ;
RATCLIFFE, JW .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (05) :3850-3865
[6]   Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry [J].
Duennbier, M. ;
Schmidt-Bleker, A. ;
Winter, J. ;
Wolfram, M. ;
Hippler, R. ;
Weltmann, K-D ;
Reuter, S. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (43)
[7]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[8]   Characterization of the effluent of a He/O2 microscale atmospheric pressure plasma jet by quantitative molecular beam mass spectrometry [J].
Ellerweg, D. ;
Benedikt, J. ;
von Keudell, A. ;
Knake, N. ;
Schulz-von der Gathen, V. .
NEW JOURNAL OF PHYSICS, 2010, 12
[9]   Investigation of Surface Etching of Poly(Ether Ether Ketone) by Atmospheric-Pressure Plasmas [J].
Fricke, Katja ;
Reuter, Stephan ;
Schroeder, Daniel ;
Schulz-von der Gathen, Volker ;
Weltmann, Klaus-Dieter ;
von Woedtke, Thomas .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2012, 40 (11) :2900-2911
[10]  
Fridman A., 2008, PLASMA CHEM