Reduced TiO2 nanoflower structured photoanodes for superior photoelectrochemical water splitting

被引:46
作者
Dong, Wei [1 ]
Li, Hongxia [1 ]
Xi, Junhua [1 ]
Mu, Jinxia [2 ]
Huang, Yanwei [1 ]
Ji, Zhenguo [1 ]
Wu, Xin [3 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] China Jiliang Univ, Dept Environm Engn, Hangzhou 310018, Zhejiang, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Mech Engn, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Reduced TiO2; Oxygen vacancy; Hydrothermal method; Photoelectrochemical performance; Charge separation; NANOTUBE ARRAYS; HYDROGEN-PRODUCTION; PHOTOCATALYTIC ACTIVITY; NANOWIRE ARRAYS; ANATASE TIO2; DOPED TIO2; ABSORPTION; NANOPARTICLES; ENHANCEMENT; EFFICIENCY;
D O I
10.1016/j.jallcom.2017.06.246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ti3+ self-doped flower-like TiO2 nanostructure was fabricated via a one-step hydrothermal method following with dipping in NaBH4 aqueous solution. The reduced TiO2 nanoflowers (NFs) were used to work as the photoanodes for photoelectrochemical (PEC) water splitting. Compared with the pure TiO2 NFs, the photocurrent density of the reduced TiO2 NFs is distinctly higher, demonstrating a promising PEC activity. The improvement of the PEC performance is owing to the introduction of oxygen vacancies. On one hand, the induced oxygen vacancies narrow the bandgap and extend the visible response, and thus produce more photoexcited carriers. On the other hand, the electrochemical impedance spectra (EIS) analysis indicates the enhanced charge separation and transport at the interface between the photoanode and the electrolyte, which is caused by the upward shift of the Fermi level facilitating the charge separation at electrode/electrolyte interface. Large scale production may be possible based on this low-cost and facile synthesis with better PEC performance. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:280 / 286
页数:7
相关论文
共 48 条
[1]   Ti3+ states induced band gap reduction and enhanced visible light absorption of TiO2 nanotube arrays: Effect of the surface solid fraction factor [J].
Ainouche, L. ;
Hamadou, L. ;
Kadri, A. ;
Benbrahim, N. ;
Bradai, D. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 151 :179-190
[2]   3D-Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research [J].
Bai, Zhiming ;
Yan, Xiaoqin ;
Li, Yong ;
Kang, Zhuo ;
Cao, Shiyao ;
Zhang, Yue .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)
[3]   Black titanium dioxide (TiO2) nanomaterials [J].
Chen, Xiaobo ;
Liu, Lei ;
Huang, Fuqiang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1861-1885
[4]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[5]   Photoactivity and charge trapping sites in copper and vanadium doped anatase TiO2 nano-materials [J].
Christoforidis, Konstantinos C. ;
Fernandez-Garcia, Marcos .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (04) :1094-1105
[6]   Preparation, photocatalytic activity, and mechanism of Nano-TiO2 co-doped with nitrogen and iron (III) [J].
Cong, Ye ;
Zhang, Jinlong ;
Chen, Feng ;
Anpo, Masakazu ;
He, Dannong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (28) :10618-10623
[7]   Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting [J].
Cui, Houlei ;
Zhao, Wei ;
Yang, Chongyin ;
Yin, Hao ;
Lin, Tianquan ;
Shan, Yufeng ;
Xie, Yian ;
Gu, Hui ;
Huang, Fuqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8612-8616
[8]   A new approach to prepare Ti3+ self-doped TiO2 via NaBH4 reduction and hydrochloric acid treatment [J].
Fang, Wenzhang ;
Xing, Mingyang ;
Zhang, Jinlong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 160 :240-246
[9]   TiO2 photocatalysis and related surface phenomena [J].
Fujishima, Akira ;
Zhang, Xintong ;
Tryk, Donald A. .
SURFACE SCIENCE REPORTS, 2008, 63 (12) :515-582
[10]   Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J].
Hisatomi, Takashi ;
Kubota, Jun ;
Domen, Kazunari .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7520-7535