Schauder bases and approximation property in fuzzy normed spaces

被引:10
|
作者
Yilmaz, Yilmaz [1 ]
机构
[1] Inonu Univ, Fac Arts & Sci, Dept Math, TR-44280 Malatya, Turkey
关键词
Fuzzy norm; Fuzzy bounded operator; Schauder basis; Approximation property; LINEAR-OPERATORS;
D O I
10.1016/j.camwa.2009.11.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this article is to introduce and study the notion of weak and strong Schauder bases in fuzzy normed spaces. Further, we introduce strong and weak fuzzy approximation properties and set a relationship between these two new notions which may provide an acceleration to the structural analysis of fuzzy normed spaces. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1957 / 1964
页数:8
相关论文
共 50 条
  • [1] Schauder Basis, Separability, and Approximation Property in Intuitionistic Fuzzy Normed Space
    Mursaleen, M.
    Karakaya, V.
    Mohiuddine, S. A.
    ABSTRACT AND APPLIED ANALYSIS, 2010,
  • [2] Schauder bases and the bounded approximation property in separable Banach spaces
    Mujica, Jorge
    Vieira, Daniela M.
    STUDIA MATHEMATICA, 2010, 196 (01) : 1 - 12
  • [3] Approximation properties in fuzzy normed spaces
    Lee, Keun Young
    FUZZY SETS AND SYSTEMS, 2016, 282 : 115 - 130
  • [4] BEST SIMULTANEOUS APPROXIMATION IN FUZZY NORMED SPACES
    Goudarzi, M.
    Vaezpour, S. M.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2010, 7 (03): : 87 - 96
  • [5] Approximation Properties in Felbin Fuzzy Normed Spaces
    Kim, Ju Myung
    Lee, Keun Young
    MATHEMATICS, 2019, 7 (10)
  • [6] t-best approximation in fuzzy normed spaces
    Vaezpour, S. M.
    Karimi, F.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2008, 5 (02): : 93 - 99
  • [7] Schauder-Type Fixed Point Theorem in Generalized Fuzzy Normed Linear Spaces
    Chatterjee, S.
    Bag, T.
    Lee, Jeong-Gon
    MATHEMATICS, 2020, 8 (10) : 1 - 18
  • [8] BEST APPROXIMATION PROPERTY IN NON-ARCHIMEDEAN NORMED SPACES
    IKEDA, M
    HAIFAWI, M
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1971, 74 (01): : 49 - &
  • [9] THE METRIC APPROXIMATION PROPERTY IN NON-ARCHIMEDEAN NORMED SPACES
    Perez-Garcia, Cristina
    Schikhof, Wilhelmus H.
    GLASNIK MATEMATICKI, 2014, 49 (02) : 407 - 419
  • [10] Approximation and existence of Schauder bases in Muntz spaces of L1 functions
    Ludkowski, Sergey V.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 441 (02) : 635 - 647