DeepShadows: Separating low surface brightness galaxies from artifacts using deep learning

被引:19
作者
Tanoglidis, D. [1 ,2 ]
Ciprijanovic, A. [3 ]
Drlica-Wagner, A. [1 ,2 ,3 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[2] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[3] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
基金
美国国家科学基金会; 英国科学技术设施理事会;
关键词
Low surface brightness galaxies; Galaxy surveys; Deep learning; Convolutional neural networks; CONVOLUTIONAL NEURAL-NETWORKS; DWARF GALAXIES; DIFFUSE GALAXIES; CLUSTER; CLASSIFICATION; CATALOG; LENSES;
D O I
10.1016/j.ascom.2021.100469
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Searches for low-surface-brightness galaxies (LSBGs) in galaxy surveys are plagued by the presence of a large number of artifacts (e.g., objects blended in the diffuse light from stars and galaxies, Galactic cirrus, star-forming regions in the arms of spiral galaxies, etc.) that have to be rejected through time consuming visual inspection. In future surveys, which are expected to collect hundreds of petabytes of data and detect billions of objects, such an approach will not be feasible. We investigate the use of convolutional neural networks (CNNs) for the problem of separating LSBGs from artifacts in survey images. We take advantage of the fact that we have available a large number of labeled LSBGs and artifacts from the Dark Energy Survey, that we use to train, validate, and test a CNN model. That model, which we call DeepShadows, achieves a test accuracy of 92.0%, a significant improvement relative to feature-based machine learning models. We also study the ability to use transfer learning to adapt this model to classify objects from the deeper Hyper-Suprime-Cam survey, and we show that after the model is retrained on a very small sample from the new survey, it can reach an accuracy of 87.6%. These results demonstrate that CNNs offer a very promising path in the quest to study the low-surface-brightness universe. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 82 条
  • [1] The Dark Energy Survey: Data Release 1
    Abbott, T. M. C.
    Abdalla, F. B.
    Allam, S.
    Amara, A.
    Annis, J.
    Asorey, J.
    Avila, S.
    Ballester, O.
    Banerji, M.
    Barkhouse, W.
    Baruah, L.
    Baumer, M.
    Bechtol, K.
    Becker, M. R.
    Benoit-Levy, A.
    Bernstein, G. M.
    Bertin, E.
    Blazek, J.
    Bocquet, S.
    Brooks, D.
    Brout, D.
    Buckley-Geer, E.
    Burke, D. L.
    Busti, V.
    Campisano, R.
    Cardiel-Sas, L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Cawthon, R.
    Chang, C.
    Chen, X.
    Conselice, C.
    Costa, G.
    Crocce, M.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Das, R.
    Daues, G.
    Davis, T. M.
    Davis, C.
    De Vicente, J.
    Depoy, D. L.
    DeRose, J.
    Desai, S.
    Diehl, H. T.
    Dietrich, J. P.
    Dodelson, S.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2018, 239 (02)
  • [2] Using transfer learning to detect galaxy mergers
    Ackermann, Sandro
    Schawinski, Kevin
    Zhang, Ce
    Weigel, Anna K.
    Turp, M. Dennis
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (01) : 415 - 425
  • [3] A deep wide survey of faint low surface brightness galaxies in the direction of the Coma cluster of galaxies
    Adami, C.
    Scheidegger, R.
    Ulmer, M.
    Durret, F.
    Mazure, A.
    West, M. J.
    Conselice, C. J.
    Gregg, M.
    Kasun, S.
    Pello, R.
    Picat, J. P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2006, 459 (03) : 679 - 692
  • [4] Image classification with deep learning in the presence of noisy labels: A survey
    Algan, Gorkem
    Ulusoy, Ilkay
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 215
  • [5] DATA MINING AND MACHINE LEARNING IN ASTRONOMY
    Ball, Nicholas M.
    Brunner, Robert J.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (07): : 1049 - 1106
  • [6] Baron D., 2019, Machine Learning in Astronomy: A Practical Overview
  • [7] SExtractor: Software for source extraction
    Bertin, E
    Arnouts, S
    [J]. ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02): : 393 - 404
  • [8] Bom C., 2019, ARXIV191106341
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks
    Caldeira, J.
    Wu, W. L. K.
    Nord, B.
    Avestruz, C.
    Trivedi, S.
    Story, K. T.
    [J]. ASTRONOMY AND COMPUTING, 2019, 28