Energy of twisted harmonic maps of Riemann surfaces

被引:0
作者
Goldman, William M. [1 ]
Wentworth, Richard A. [2 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[2] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
来源
IN THE TRADITION OF AHLFORS-BERS, IV | 2007年 / 432卷
关键词
Riemann surface; fundamental group; flat bundle; harmonic map; energy; Teichmuller space; convex cocompact hyperbolic manifold;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The energy of harmonic sections of flat bundles of nonpositively curved (NPC) length spaces over a Riemann surface S is a function E-rho on Teichmuller space T-S which is a qualitative invariant of the holonomy representation rho of pi(1) (S). Adapting ideas of Sacks-Uhlenbeck, Schoen-Yau and Tromba, we show that the energy function E-rho is proper for any convex co-compact representation of the fundamental group. More generally, if rho is a discrete embedding onto a normal subgroup of a convex cocompact group Gamma, then E-rho defines a proper function on the quotient T-S/Q where Q is the subgroup of the mapping class group defined by Gamma/rho(pi(1)(S)). When the image of rho contains parabolic elements, then E-rho is not proper. Using the theory of geometric tameness developed by Thurston and Bonahon [5], we show that if rho is a discrete embedding into SL(2, C), then E-rho is proper if and only if rho is quasi-Fuchsian. These results are used to prove that the mapping class group acts properly on the subset of convex cocompact representations.
引用
收藏
页码:45 / +
页数:3
相关论文
共 53 条
[1]  
AGOL I, MATHGT0405568, P37937
[2]  
[Anonymous], 1980, LECT NOTES MATH
[3]   FRICKE SPACES [J].
BERS, L ;
GARDINER, FP .
ADVANCES IN MATHEMATICS, 1986, 62 (03) :249-284
[4]  
Bers L., 1960, Bull. Amer. Math. Soc, V66, P94, DOI [10.1090/S0002-9904-1960-10413-2, DOI 10.1090/S0002-9904-1960-10413-2]
[5]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[6]   Markoff triples and quasifuchsian groups [J].
Bowditch, BH .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :697-736
[7]  
BRIDSON M, 1999, METRIC SPACS NON POS, V319, P37937
[8]  
BURGER M, IN PRESS SURFACE GRO, P37937
[9]  
BURGER M, 2005, MEMORY ARMAND BOREL, V1, P555
[10]  
Buser P., 1992, Progress in Mathematics, Vvol. 106