Best practices in machine learning for chemistry comment

被引:327
作者
Artrith, Nongnuch [1 ,2 ]
Butler, Keith T. [3 ]
Coudert, Francois-Xavier [4 ]
Han, Seungwu [5 ]
Isayev, Olexandr [6 ,7 ]
Jain, Anubhav [8 ]
Walsh, Aron [9 ,10 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[2] Columbia Univ, Columbia Ctr Computat Electrochem, CCCE, New York, NY 10027 USA
[3] STFC Rutherford Appleton Lab, Dept Comp Sci, SciML, Harwell Campus, Didcot, England
[4] PSL Univ, Inst Rech Chim Paris, Chim ParisTech, CNRS, Paris, France
[5] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea
[6] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pennsylvania, PA 15213 USA
[7] Carnegie Mellon Univ, Mellon Coll Sci, Dept Chem, Pittsburgh, PA 15213 USA
[8] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[9] Imperial Coll London, Dept Mat, London, England
[10] Yonsei Univ, Dept Mat Sci & Engn, Seoul, South Korea
关键词
PERFORMANCE; VALIDATION; NETWORKS;
D O I
10.1038/s41557-021-00716-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Statistical tools based on machine learning are becoming integrated into chemistry research workflows. We discuss the elements necessary to train reliable, repeatable and reproducible models, and recommend a set of guidelines for machine learning reports.
引用
收藏
页码:505 / 508
页数:4
相关论文
共 34 条
[1]   Predicting reaction performance in C-N cross-coupling using machine learning [J].
Ahneman, Derek T. ;
Estrada, Jesus G. ;
Lin, Shishi ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 360 (6385) :186-190
[2]  
[Anonymous], REPRODUCIBILITY REPL
[3]   Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm [J].
Artrith, Nongnuch ;
Urban, Alexander ;
Ceder, Gerbrand .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
[4]   Charting a course for chemistry [J].
Aspuru-Guzik, Alan ;
Baik, Mu-Hyun ;
Balasubramanian, Shankar ;
Banerjee, Rahul ;
Bart, Suzanne ;
Borduas-Dedekind, Nadine ;
Chang, Sukbok ;
Chen, Peng ;
Corminboeuf, Clemence ;
Coudert, Francois-Xavier ;
Cronin, Leroy ;
Crudden, Cathleen ;
Cuk, Tanja ;
Doyle, Abigail G. ;
Fan, Chunhai ;
Feng, Xinliang ;
Freedman, Danna ;
Furukawa, Shuhei ;
Ghosh, Suhrit ;
Glorius, Frank ;
Jeffries-EL, Malika ;
Katsonis, Nathalie ;
Li, Ang ;
Linse, Sara Snogerup ;
Marchesan, Silvia ;
Maulide, Nuno ;
Milo, Anat ;
Narayan, Alison R. H. ;
Naumov, Pance ;
Nevado, Cristina ;
Nyokong, Tebello ;
Palacin, Rosa ;
Reid, Marc ;
Robinson, Carol ;
Robinson, Gregory ;
Sarpong, Richmond ;
Schindler, Corinna ;
Schlau-Cohen, Gabriela S. ;
Schmidt, Timothy W. ;
Sessoli, Roberta ;
Shao-Horn, Yang ;
Sleiman, Hanadi ;
Sutherland, John ;
Taylor, Annette ;
Tezcan, Akif ;
Tortosa, Mariola ;
Walsh, Aron ;
Watson, Allan J. B. ;
Weckhuysen, Bert M. ;
Weiss, Emily .
NATURE CHEMISTRY, 2019, 11 (04) :286-294
[5]   First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems [J].
Behler, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12828-12840
[6]   Permutationally invariant potential energy surfaces in high dimensionality [J].
Braams, Bastiaan J. ;
Bowman, Joel M. .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2009, 28 (04) :577-606
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]   Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals [J].
Chen, Chi ;
Ye, Weike ;
Zuo, Yunxing ;
Zheng, Chen ;
Ong, Shyue Ping .
CHEMISTRY OF MATERIALS, 2019, 31 (09) :3564-3572
[9]   Systematic exploration of the mechanical properties of 13 621 inorganic compounds [J].
Chibani, Siwar ;
Coudert, Francois-Xavier .
CHEMICAL SCIENCE, 2019, 10 (37) :8589-8599
[10]   Comment on "Predicting reaction performance in C-N cross-coupling using machine learning" [J].
Chuang, Kangway V. ;
Keiser, Michael J. .
SCIENCE, 2018, 362 (6416)