Carbon under pressure

被引:95
作者
Sundqvist, Bertil [1 ]
机构
[1] Umea Univ, Dept Phys, SE-90187 Umea, Sweden
来源
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS | 2021年 / 909卷
关键词
High pressure; Graphite; Diamond; Nanotubes; Fullerenes; Phase transformation; X-RAY-DIFFRACTION; ORTHORHOMBIC POLYMERIC PHASE; 2-DIMENSIONAL RHOMBOHEDRAL POLYMER; TEMPERATURE-INDUCED DECOMPOSITION; CATALYTIC 3D POLYMERIZATION; ORIENTED PYROLYTIC-GRAPHITE; C-60; SINGLE-CRYSTALS; RAMAN-SCATTERING; ELECTRONIC-PROPERTIES; GLASSY-CARBON;
D O I
10.1016/j.physrep.2020.12.007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Carbon is an element with extremely versatile bonding properties and theoretical calculations have suggested the possible existence of several hundred structural allotropes. Many, or even most, of these are predicted to be formed under conditions of high pressure and temperature. On the other hand, experimental high pressure studies have identified surprisingly few structural allotropes. In this paper, physical properties and structural transformations observed in high pressure experiments, at and above room temperature, are reviewed for a large number of solid carbon allotropes. The materials discussed include bulk carbon such as graphite, diamond, glass-like and amorphous carbon, two-dimensional graphene, and molecular carbon in the form of one-dimensional carbon nanotubes and zero-dimensional fullerenes. Results from recent studies on twisted graphene, graphdiyne, graphyne, carbon dots and other interesting all-carbon allotropes are also briefly described. Observed similarities and differences between the high pressure behavior and evolution of carbon materials are discussed. In spite of the enormous volume of experimental work carried out on these materials, few new structural allotropes have been identified and most carbon materials studied convert into diamond at sufficiently high temperature and pressure. Further theoretical work thus seems to be needed to elucidate possible transformation processes and transition paths for the many undiscovered allotropes proposed from calculations. In particular, it is recommended that, for every new allotrope predicted by theory, suitable precursors and transformation conditions should also be investigated. Efficient creation of new structural allotropes or functional materials based on pure carbon by high pressure methods should ideally start from designed, preassembled precursor structures or composites for which transition paths can be theoretically predicted. (C) 2021 The Author. Published by Elsevier B.V.
引用
收藏
页码:1 / 73
页数:73
相关论文
共 708 条
[1]   Molecular Dynamics and Phase Transition in One-Dimensional Crystal of C60 Encapsulated Inside Single Wall Carbon Nanotubes [J].
Abou-Hamad, E. ;
Kim, Y. ;
Wagberg, T. ;
Boesch, D. ;
Aloni, S. ;
Zettl, A. ;
Rubio, A. ;
Luzzi, D. E. ;
Goze-Bac, C. .
ACS NANO, 2009, 3 (12) :3878-3883
[2]   Effects of intercalation and inhomogeneous filling on the collapse pressure of double-wall carbon nanotubes [J].
Aguiar, A. L. ;
San-Miguel, A. ;
Barros, E. B. ;
Kalbac, M. ;
Machon, D. ;
Kim, Y. A. ;
Muramatsu, H. ;
Endo, M. ;
Souza Filho, A. G. .
PHYSICAL REVIEW B, 2012, 86 (19)
[3]   Structural and Phonon Properties of Bundled Single- and Double-Wall Carbon Nanotubes Under Pressure [J].
Aguiar, A. L. ;
Capaz, Rodrigo B. ;
Souza Filho, A. G. ;
San-Miguel, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (42) :22637-22645
[4]   Pressure-Induced Collapse in Double-Walled Carbon Nanotubes: Chemical and Mechanical Screening Effects [J].
Aguiar, A. L. ;
Barros, E. B. ;
Capaz, R. B. ;
Souza Filho, A. G. ;
Freire, P. T. C. ;
Mendes Filho, J. ;
Machon, D. ;
Caillier, Ch ;
Kim, Y. A. ;
Muramatsu, H. ;
Endo, M. ;
San-Miguel, A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5378-5384
[5]   ELECTRONIC-STRUCTURE OF GRAPHITE - EFFECT OF HYDROSTATIC-PRESSURE [J].
AHUJA, R ;
AULUCK, S ;
TRYGG, J ;
WILLS, JM ;
ERIKSSON, O ;
JOHANSSON, B .
PHYSICAL REVIEW B, 1995, 51 (08) :4813-4819
[6]   C6Yb and graphite:: A comparative high-pressure transport study [J].
Akrap, A. ;
Weller, T. ;
Ellerby, M. ;
Saxena, S. S. ;
Csanyi, G. ;
Forro, L. .
PHYSICAL REVIEW B, 2007, 76 (04)
[7]  
Aksenenkov V. V., 1994, Physics-Doklady, V39, P700
[8]   Pressure-induced radial collapse in few-wall carbon nanotubes: A combined theoretical and experimental study [J].
Alencar, R. S. ;
Cui, Wenwen ;
Torres-Dias, A. C. ;
Cerqueira, Tiago F. T. ;
Botti, Silvana ;
Marques, Miguel A. L. ;
Ferreira, O. P. ;
Laurent, Ch ;
Weibel, A. ;
Machon, D. ;
Dunstan, D. J. ;
Souza Filho, A. G. ;
San-Miguel, A. .
CARBON, 2017, 125 :429-436
[9]   Pressure-Induced Selectivity for Probing Inner Tubes in Double- and Triple-Walled Carbon Nanotubes: A Resonance Raman Study [J].
Alencar, R. S. ;
Aguiar, A. L. ;
Paschoal, A. R. ;
Freire, P. T. C. ;
Kim, Y. A. ;
Muramatsu, H. ;
Endo, M. ;
Terrones, H. ;
Terrones, M. ;
San-Miguel, A. ;
Dresselhaus, M. S. ;
Souza Filho, A. G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (15) :8153-8158
[10]   Structural phase transitions of C60 under high-pressure and high-temperature [J].
Alvarez-Murga, M. ;
Hodeau, J. L. .
CARBON, 2015, 82 :381-407