Development of a Predictor for Human Brain Tumors Based on Gene Expression Values Obtained from Two Types of Microarray Technologies

被引:11
作者
Castells, Xavier [1 ,7 ]
Jose Acebes, Juan [2 ,7 ]
Boluda, Susana [3 ]
Moreno-Torres, Angel [4 ,7 ]
Pujol, Jesus [5 ,7 ]
Julia-Sape, Margarida [7 ]
Paula Candiota, Ana [7 ]
Arino, Joaquin [6 ]
Barcelo, Anna [6 ]
Arus, Carles [1 ,7 ]
机构
[1] Univ Autonoma Barcelona, GABRMN, Fac Biociencies, E-08193 Barcelona, Spain
[2] Hosp Univ Bellvitge, Dept Neurocirurgia, IBIBELL, Barcelona, Spain
[3] Hosp Univ Bellvitge, Inst Neuropatol, IBIBELL, Serv Anat Patol, Barcelona, Spain
[4] Ctr Diagnot Pedralbes, Res Dept, Barcelona, Spain
[5] CRC Corp Sanitaria, Inst Alta Tecnol, Barcelona, Spain
[6] Univ Autonoma Barcelona, Dept Bioquim & Biol Mol, E-08193 Barcelona, Spain
[7] CIBER BBN, Barcelona, Spain
关键词
PROTEIN;
D O I
10.1089/omi.2009.0093
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Development of molecular diagnostics that can reliably differentiate amongst different subtypes of brain tumors is an important unmet clinical need in postgenomics medicine and clinical oncology. A simple linear formula derived from gene expression values of four genes (GFAP, PTPRZ1, GPM6B, and PRELP) measured from cDNA microarrays (n = 35) have distinguished glioblastoma and meningioma cases in a previous study. We herein extend this work further and report that the above predictor formula showed its robustness when applied to Affymetrix microarray data acquired prospectively in our laboratory (n = 80) as well as publicly available data (n = 98). Importantly, GFAP and GPM6B were both retained as being significant in the predictive model upon using the Affymetrix data obtained in our laboratory, whereas the other two predictor genes were SFRP2 and SLC6A2. These results collectively indicate the importance of the expression values of GFAP and GPM6B genes sampled from the two types of microarray technologies tested. The high prediction accuracy obtained in these instances demonstrates the robustness of the predictors across microarray platforms used. This result would require further validation with a larger population of meningioma and glioblastoma cases. At any rate, this study paves the way for further application of gene signatures to more stringent biopsy discrimination challenges.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 24 条
[1]   GFAP gene expression during development of astrocyte [J].
Baba, H ;
Nakahira, K ;
Morita, N ;
Tanaka, F ;
Akita, H ;
Ikenaka, K .
DEVELOPMENTAL NEUROSCIENCE, 1997, 19 (01) :49-57
[2]   MAID : An effect size based model for microarray data integration across laboratories and platforms [J].
Borozan, Ivan ;
Chen, Limin ;
Paeper, Bryan ;
Heathcote, Jenny E. ;
Edwards, Aled M. ;
Katze, Michael ;
Zhang, Zhaolei ;
McGilvray, Ian D. .
BMC BIOINFORMATICS, 2008, 9 (1) :305
[3]   Cross platform microarray analysis for robust identification of differentially expressed genes [J].
Bosotti, Roberta ;
Locatelli, Giuseppe ;
Healy, Sandra ;
Scacheri, Emanuela ;
Sartori, Luca ;
Mercurio, Ciro ;
Calogero, Raffaele ;
Isacchi, Antonella .
BMC BIOINFORMATICS, 2007, 8 (Suppl 1)
[4]   Automated Brain Tumor Biopsy Prediction Using Single-labeling cDNA Microarrays-based Gene Expression Profiling [J].
Castells, Xavier ;
Miguel Garcia-Gomez, Juan ;
Navarro, Alfredo ;
Jose Acebes, Juan ;
Godino, Oscar ;
Boluda, Susana ;
Barcelo, Anna ;
Robles, Montserrat ;
Arino, Joaquin ;
Arus, Carles .
DIAGNOSTIC MOLECULAR PATHOLOGY, 2009, 18 (04) :206-218
[5]   Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting [J].
Dupuy, Alain ;
Simon, Richard M. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2007, 99 (02) :147-157
[6]   Non-linear normalization and background correction in one-channel cDNA microarray studies [J].
Edwards, D .
BIOINFORMATICS, 2003, 19 (07) :825-833
[7]   Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) [J].
Eng, LF ;
Ghirnikar, RS ;
Lee, YL .
NEUROCHEMICAL RESEARCH, 2000, 25 (9-10) :1439-1451
[8]   Combining gene expression data from different generations of oligonucleotide arrays [J].
Hwang, KB ;
Kong, SW ;
Greenberg, SA ;
Park, PJ .
BMC BIOINFORMATICS, 2004, 5 (1)
[9]  
Khan MU, 2008, IEEE ENG MED BIO, P5148, DOI 10.1109/IEMBS.2008.4650373
[10]  
Kleihues P., 2000, PATHOLOGY GENETICS T