Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles

被引:438
作者
Suhy, DA
Giddings, TH
Kirkegaard, K [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Microbiol & Immunol, Stanford, CA 94305 USA
[2] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA
关键词
D O I
10.1128/JVI.74.19.8953-8965.2000
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
All positive strand RNA viruses of eukaryotes studied assemble RNA replication complexes on the surfaces of cytoplasmic membranes. Infection of mammalian cells with poliovirus and other picornaviruses results in the accumulation of dramatically rearranged and vesiculated membranes. Poliovirus-induced membranes did not cofractionate,vith endoplasmic reticulum (ER), lysosomes, mitochondria, or the majority of Golgi-derived or endosomal membranes in buoyant density gradients, although changes in ionic strength affected ER and virus-induced vesicles, but not other cellular organelles, similarly. When expressed in isolation, two viral proteins of the poliovirus RNA replication complex. 3A and 2C, cofractionated with ER membranes. However, in cells that expressed 2BC, a proteolytic precursor of the 2B and 2C proteins, membranes identical in buoyant density to those observed during poliovirus infection were formed. When coexpressed with 2BC, viral protein 3A was quantitatively incorporated into these fractions, and the membranes formed were ultrastructurally similar to those in poliovirus-infected cells. These data argue that poliovirus-induced vesicles derive from the ER by the action of viral proteins 2BC and 3A by a mechanism that excludes resident host proteins. The double-membraned morphology, cytosolic content, and apparent ER origin of poliovirus-induced membranes are all consistent with an autophagic origin for these membranes.
引用
收藏
页码:8953 / 8965
页数:13
相关论文
共 54 条
[1]   INDUCTION OF MEMBRANE PROLIFERATION BY POLIOVIRUS PROTEINS 2C AND 2BC [J].
ALDABE, R ;
CARRASCO, L .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 206 (01) :64-76
[2]  
Andrés G, 1998, J VIROL, V72, P8988
[3]   Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway [J].
Andrews, HL ;
Vogel, JP ;
Isberg, RR .
INFECTION AND IMMUNITY, 1998, 66 (03) :950-958
[4]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[5]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE POLIOVIRUS REPLICATION COMPLEX [J].
BIENZ, K ;
EGGER, D ;
PFISTER, T ;
TROXLER, M .
JOURNAL OF VIROLOGY, 1992, 66 (05) :2740-2747
[6]   ASSOCIATION OF POLIOVIRAL PROTEINS OF THE P2-GENOMIC REGION WITH THE VIRAL REPLICATION COMPLEX AND VIRUS-INDUCED MEMBRANE SYNTHESIS AS VISUALIZED BY ELECTRON-MICROSCOPIC IMMUNOCYTOCHEMISTRY AND AUTORADIOGRAPHY [J].
BIENZ, K ;
EGGER, D ;
PASAMONTES, L .
VIROLOGY, 1987, 160 (01) :220-226
[7]   STRUCTURAL ORGANIZATION OF POLIOVIRUS RNA REPLICATION IS MEDIATED BY VIRAL-PROTEINS OF THE P2 GENOMIC REGION [J].
BIENZ, K ;
EGGER, D ;
TROXLER, M ;
PASAMONTES, L .
JOURNAL OF VIROLOGY, 1990, 64 (03) :1156-1163
[8]   VIRUS REPLICATION, CYTOPATHOLOGY, AND LYSOSOMAL ENZYME RESPONSE OF MITOTIC AND INTERPHASE HEP-2 CELLS INFECTED WITH POLIOVIRUS [J].
BIENZ, K ;
EGGER, D ;
WOLFF, DA .
JOURNAL OF VIROLOGY, 1973, 11 (04) :565-574
[9]   Cowpea mosaic virus infection induces a massive proliferation of endoplasmic reticulum but not Golgi membranes and is dependent on de novo membrane synthesis [J].
Carette, JE ;
Stuiver, M ;
Van Lent, J ;
Wellink, J ;
Van Kammen, AB .
JOURNAL OF VIROLOGY, 2000, 74 (14) :6556-6563
[10]   MEMBRANE REARRANGEMENT AND VESICLE INDUCTION BY RECOMBINANT POLIOVIRUS 2C AND 2BC IN HUMAN-CELLS [J].
CHO, MW ;
TETERINA, N ;
EGGER, D ;
BIENZ, K ;
EHRENFELD, E .
VIROLOGY, 1994, 202 (01) :129-145