The Unique of Inverse Eigenvalue Problem for a Generalized Jacobi Matrices

被引:0
作者
Li, Zhibin [1 ]
Zhao, Xinxin [1 ]
机构
[1] Dalian Jiaotong Univ, Coll Math & Phys, Dalian, Peoples R China
来源
ACC 2009: ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING | 2009年
关键词
generalized Jacobi matrix; characteristic value; inverse problem; unique;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the following inverse eigenvalue problem for generalized Jacobi matrices: Given real numbers lambda,mu(lambda not equal mu) and two nonzero vectors x,y is an element of R(n). Find nxn real generalized Jacobi matrices J (c(i) = kb(i) + l(i = 1, 2,..., n-1)) such tha Jx = lambda x, Jy = mu y. The algorithm and uniqueness theorem of the solution of the problem are given, and some numerical example is provided.
引用
收藏
页码:21 / 23
页数:3
相关论文
共 50 条
[21]   Inverse eigenvalue problem for anti-centrosymmetric matrices [J].
Yuan, Yan-Dong ;
Wang, Xiang-Rong .
PROCEEDINGS OF THE 14TH CONFERENCE OF INTERNATIONAL LINEAR ALGEBRA SOCIETY, 2007, :398-401
[22]   Newton's method for a generalized inverse eigenvalue problem [J].
Dai, H ;
Lancaster, P .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1997, 4 (01) :1-21
[23]   Inverse Generalized Eigenvalue Problem for Principal Square Submatrix [J].
Li, Zhibin ;
Chang, Jing .
2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, :298-301
[24]   Inverse Eigenvalue Problem for Real Five-Diagonal Matrices with Proportional Relation [J].
Tian, Mingxing ;
Li, Zhibin .
INFORMATION COMPUTING AND APPLICATIONS, PT 1, 2010, 105 :48-53
[25]   On solutions of inverse problem for Hermitian generalized Hamiltonian matrices [J].
Liang, Kaifu ;
Li, Mingjun ;
Zhu, Zelin .
ENERGY DEVELOPMENT, PTS 1-4, 2014, 860-863 :2727-2731
[26]   Inverse Eigenvalue Problem for a Class of Upper Triangular Matrices with Linear Relation [J].
Li, Zhibin ;
Li, Shuai .
MECHANICAL COMPONENTS AND CONTROL ENGINEERING III, 2014, 668-669 :1068-1071
[27]   An Inverse Eigenvalue Problem for a Class of Second- and Third-Order Matrices [J].
Perepelkin, E. A. .
NUMERICAL ANALYSIS AND APPLICATIONS, 2015, 8 (03) :260-266
[28]   The best approximation solutions of inverse problem of generalized antihamilton matrices [J].
Yuan, Yandong ;
Wang, Xiangrong ;
Ai, Sumei .
Advances in Matrix Theory and Applications, 2006, :176-179
[29]   To solving inverse eigenvalue problems for matrices [J].
Kublanovskaya V.N. .
Journal of Mathematical Sciences, 2012, 182 (6) :823-829
[30]   INVERSE EIGENVALUE PROBLEM FOR TENSORS [J].
Ye, Ke ;
Hu, Shenglong .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (06) :1627-1649