ROS Homeostasis and Plant Salt Tolerance: Plant Nanobiotechnology Updates

被引:94
作者
Liu, Jiahao [1 ]
Fu, Chengcheng [1 ]
Li, Guangjing [1 ]
Khan, Mohammad Nauman [1 ]
Wu, Honghong [1 ]
机构
[1] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China
关键词
salt stress; ROS homeostasis; chloroplasts; mitochondria; the apoplast; plant nanobiotechnology; ASCORBATE-GLUTATHIONE CYCLE; REACTIVE OXYGEN; ABIOTIC STRESS; SUPEROXIDE-DISMUTASE; OXIDATIVE STRESS; NANOPARTICLES; MITOCHONDRIAL; ARABIDOPSIS; EXPRESSION; DROUGHT;
D O I
10.3390/su13063552
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Salinity is an issue impairing crop production across the globe. Under salinity stress, besides the osmotic stress and Na+ toxicity, ROS (reactive oxygen species) overaccumulation is a secondary stress which further impairs plant performance. Chloroplasts, mitochondria, the apoplast, and peroxisomes are the main ROS generation sites in salt-stressed plants. In this review, we summarize ROS generation, enzymatic and non-enzymatic antioxidant systems in salt-stressed plants, and the potential for plant biotechnology to maintain ROS homeostasis. Overall, this review summarizes the current understanding of ROS homeostasis of salt-stressed plants and highlights potential applications of plant nanobiotechnology to enhance plant tolerance to stresses.
引用
收藏
页数:13
相关论文
共 121 条
[1]  
Alfonso D.L, 2009, REACTIVE OXYGEN SPEC, DOI [10.1007/978-3-642-00390-5, DOI 10.1007/978-3-642-00390-5]
[2]   The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles [J].
Alharby, Hesham F. ;
Metwali, Ehab M. R. ;
Fuller, Michael P. ;
Aldhebiani, Amal Y. .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2016, 23 (06) :773-781
[3]  
Almutairi ZM, 2016, INT J AGRIC BIOL, V18, P449
[4]  
[Anonymous], 2018, PLANTA, DOI DOI 10.1007/s00425-018-2887-9
[5]   The Arabidopsis Tail-Anchored Protein PEROXISOMAL AND MITOCHONDRIAL DIVISION FACTOR1 Is Involved in the Morphogenesis and Proliferation of Peroxisomes and Mitochondria [J].
Aung, Kyaw ;
Hu, Jianping .
PLANT CELL, 2011, 23 (12) :4446-4461
[6]   Postharvest ascorbic acid application maintained physiological and antioxidant responses of Guava (Psidium guajava']java L.) at ambient storage [J].
Azam, Muhammad ;
Hameed, Laraib ;
Qadri, Rashad ;
Ejaz, Shaghef ;
Aslam, Ali ;
Khan, Muhammad Imran ;
Shen, Jiyuan ;
Zhang, Jiukai ;
Nafees, Muhammad ;
Ahmad, Ishtiaq ;
Ghani, Muhammad Awais ;
Chen, Jiao ;
Anjum, Naveeda .
FOOD SCIENCE AND TECHNOLOGY, 2021, 41 (03) :748-754
[7]   An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants [J].
Begcy, Kevin ;
Mariano, Eduardo D. ;
Mattiello, Lucia ;
Nunes, Alessandra V. ;
Mazzafera, Paulo ;
Maia, Ivan G. ;
Menossi, Marcelo .
PLOS ONE, 2011, 6 (08)
[8]  
Bhattacharjee S, 2005, CURR SCI INDIA, V89, P1113
[9]   Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting [J].
Boghossian, Ardemis A. ;
Sen, Fatih ;
Gibbons, Brenna M. ;
Sen, Selda ;
Faltermeier, Sean M. ;
Giraldo, Juan Pablo ;
Zhang, Cathy T. ;
Zhang, Jingqing ;
Heller, Daniel A. ;
Strano, Michael S. .
ADVANCED ENERGY MATERIALS, 2013, 3 (07) :881-893
[10]   The plant energy-dissipating mitochondrial systems: depicting the genomic structure and the expression profiles of the gene families of uncoupling protein and alternative oxidase in monocots and dicots [J].
Borecky, J ;
Nogueira, FTS ;
de Oliveira, KAP ;
Maia, IG ;
Vercesi, AE ;
Arruda, P .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (04) :849-864