Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials

被引:30
作者
Aptekarev, Alexander I. [1 ]
Yattselev, Maxim L. [2 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Miusskaya Sq 4, Moscow 125047, Russia
[2] Indiana Univ Purdue Univ, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USA
关键词
RIEMANN-HILBERT APPROACH; ORTHOGONAL POLYNOMIALS; CONVERGENCE; RESPECT;
D O I
10.1007/s11511-016-0133-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a germ of an analytic function at infinity that can be analytically continued along any path in the complex plane deprived of a finite set of points, , . J. Nuttall has put forward the important relation between the maximal domain of f where the function has a single-valued branch and the domain of convergence of the diagonal Pad, approximants for f. The Pad, approximants, which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of their convergence. At the same time most of their poles tend to the boundary of the domain of convergence and the support of their limiting distribution models the system of cuts that makes the function f single-valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has minimal logarithmic capacity among all other systems converting the function f to a single-valued branch. Thus the domain of convergence corresponds to the maximal (in the sense of minimal boundary) domain of single-valued holomorphy for the analytic function . The complete proof of Nuttall's conjecture (even in a more general setting where the set A has logarithmic capacity 0) was obtained by H. Stahl. In this work, we derive strong asymptotics for the denominators of the diagonal Pad, approximants for this problem in a rather general setting. We assume that A is a finite set of branch points of f which have the algebro-logarithmic character and which are placed in a generic position. The last restriction means that we exclude from our consideration some degenerated "constellations" of the branch points.
引用
收藏
页码:217 / 280
页数:64
相关论文
共 61 条
[1]  
Akhiezer N.I., 1990, Translations of Mathematical Monographs, V79
[2]  
[Anonymous], 1975, ORTHOGONAL POLYNOMIA
[3]  
[Anonymous], 2000, ORTHOGONAL POLYNOMIA
[4]  
[Anonymous], 1968, HDB MATH FUNCTIONS
[5]   Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Pade approximants [J].
Aptekarev, A. I. ;
Lysov, V. G. .
SBORNIK MATHEMATICS, 2010, 201 (1-2) :183-234
[6]  
Aptekarev A. I., 2008, PREPRINTS KELDYSH I
[7]   Sharp constants for rational approximations of analytic functions [J].
Aptekarev, AI .
SBORNIK MATHEMATICS, 2002, 193 (1-2) :1-72
[8]   Scalar and matrix Riemann-Hilbert approach to the strong asymptotics of Pade approximants and complex orthogonal polynomials with varying weight [J].
Aptekarev, AI ;
Van Assche, W .
JOURNAL OF APPROXIMATION THEORY, 2004, 129 (02) :129-166
[9]  
Baik J., 2001, Adv. Theor. Math. Phys, V5, P1207, DOI [10.4310/ATMP.2001.v5.n6.a7, DOI 10.4310/ATMP.2001.V5.N6.A7]
[10]  
Baker Jr G A, 1996, ENCY MATH ITS APPL, V59