Iterative weighted estimation based on variance modelling in linear regression models

被引:1
作者
Zhao, Yan-Yong [1 ]
Lin, Jin-Guan [1 ]
Huang, Xing-Fang [1 ]
Wang, Hong-Xia [1 ]
机构
[1] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic properties; Linear regression models; Modified Levenberg-Marquardt method; Variance modelling;
D O I
10.1080/03610918.2018.1458136
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimation of variance function plays an extremely important role in statistical inference of the regression models. In this paper we propose a variance modelling method for constructing the variance structure via combining the exponential polynomial modelling method and the kernel smoothing technique. A simple estimation method for the parameters in heteroscedastic linear regression models is developed when the covariance matrix is unknown diagonal and the variance function is a positive function of the mean. The consistency and asymptotic normality of the resulting estimators are established under some mild assumptions. In particular, a simple version of bootstrap test is adapted to test misspecification of the variance function. Some Monte Carlo simulation studies are carried out to examine the finite sample performance of the proposed methods. Finally, the methodologies are illustrated by the ozone concentration dataset.
引用
收藏
页码:2599 / 2614
页数:16
相关论文
共 19 条
[1]   Linear regression models with slash-elliptical errors [J].
Alcantara, Izabel Cristina ;
Cysneiros, Francisco Jose A. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 64 :153-164
[2]   Linear regression model with new symmetric distributed errors [J].
Atsedeweyn, A. Asrat ;
Rao, K. Srinivasa .
JOURNAL OF APPLIED STATISTICS, 2014, 41 (02) :364-381
[3]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[4]   ROBUST ESTIMATION IN HETEROSCEDASTIC LINEAR-MODELS [J].
CARROLL, RJ ;
RUPPERT, D .
ANNALS OF STATISTICS, 1982, 10 (02) :429-441
[5]   ADAPTING FOR HETEROSCEDASTICITY IN LINEAR-MODELS [J].
CARROLL, RJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1224-1233
[6]   Generalized likelihood ratio statistics and Wilks phenomenon [J].
Fan, JQ ;
Zhang, CM ;
Zhang, J .
ANNALS OF STATISTICS, 2001, 29 (01) :153-193
[7]  
Green P.J., 1993, NONPARAMETRIC REGRES, DOI [DOI 10.1201/B15710, DOI 10.1007/978-1-4899-4473-3]
[8]   Multiple linear regression model with stochastic design variables [J].
Islam, M. Qamarul ;
Tiku, Moti L. .
JOURNAL OF APPLIED STATISTICS, 2010, 37 (06) :923-943
[9]   Linear mixed models with skew-elliptical distributions:: A Bayesian approach [J].
Jara, Alejandro ;
Quintana, Fernando ;
Martin, Ernesto San .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (11) :5033-5045
[10]   ASYMPTOTIC PROPERTIES OF NON-LINEAR LEAST SQUARES ESTIMATORS [J].
JENNRICH, RI .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (02) :633-&