Existence, Uniqueness and Asymptotic Behavior for the Vlasov-Poisson System with Radiation Damping

被引:10
作者
Chen, Jing [1 ]
Zhang, Xian Wen [2 ]
Gao, Ran [1 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Vlasov-Poisson system; radiation damping; velocity averages; weak solution; uniqueness; GLOBAL WEAK SOLUTIONS; KINETIC-EQUATIONS; INITIAL DATA; PROPAGATION; MOMENTS;
D O I
10.1007/s10114-016-6310-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy problem for the Vlasov-Poisson system with radiation damping. By virtue of energy estimate and a refined velocity average lemma, we establish the global existence of nonnegative weak solution and asymptotic behavior under the condition that initial data have finite mass and energy. Furthermore, by building a Gronwall inequality about the distance between the Lagrangian flows associated to the weak solutions, we can prove the uniqueness of weak solution when the initial data have a higher order velocity moment.
引用
收藏
页码:635 / 656
页数:22
相关论文
共 17 条
[1]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[2]  
Bauer S., 2006, ANAL MODELING SIMULA
[3]   Averaging lemmas without time Fourier transform and application to discretized kinetic equations [J].
Bouchut, F ;
Desvillettes, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :19-36
[4]   GLOBAL WEAK SOLUTIONS OF VLASOV-MAXWELL SYSTEMS [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :729-757
[5]  
Horst E., 1984, MATH METHOD APPL SCI, V6, P262, DOI 10.1002/mma.1670060118
[6]   The Vlasov-Poisson system with radiation damping [J].
Kunze, M ;
Rendall, AD .
ANNALES HENRI POINCARE, 2001, 2 (05) :857-886
[7]  
Lieb E., 2001, Analysis
[8]   PROPAGATION OF MOMENTS AND REGULARITY FOR THE 3-DIMENSIONAL VLASOV-POISSON SYSTEM [J].
LIONS, PL ;
PERTHAME, B .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :415-430
[9]   Uniqueness of the solution to the Vlasov-Poisson system with bounded density [J].
Loper, Gregoire .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (01) :68-79
[10]   A Uniqueness Criterion for Unbounded Solutions to the Vlasov-Poisson System [J].
Miot, Evelyne .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (02) :469-482