Modification Strategy for Constructing Li Gradient Combined with Spinel Phase Coating on Li-Rich Mn-Based Materials

被引:13
作者
Luo, Qi [1 ]
Kang, Jiankai [1 ]
Liao, Zijun [1 ]
Feng, Xingyi [1 ]
Zou, Hanbo [1 ]
Yang, Wei [1 ]
Pai, Chengchao [2 ]
Sun, Raymond Waiyin [2 ]
Chen, Shengzhou [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou Lee & Man Technol Co Ltd, Guangzhou 511457, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-rich layered oxides; cathode materials; Li-gradient; spinel phase coating; (NH 4 ) 2 SiF (6); cycling stability; ENHANCED ELECTROCHEMICAL PERFORMANCE; LAYERED CATHODE MATERIALS; HIGH-ENERGY; SURFACE MODIFICATION; LI2MNO3; ACTIVATION; THERMAL-STABILITY; LITHIUM; OXIDES; MICROSPHERES; TRANSITION;
D O I
10.1021/acsaem.2c00076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-rich layered oxides (LLOs) are considered as the cathode materials for the next generation of lithium-ion batteries because of their high specific capacity. However, due to the structural rearrangement in the charging and discharging process, the initial Coulombic efficiency (ICE) is low and accompanied by serious voltage attenuation and bad cycle performance. In this work, the Li-gradient layer on the surface of the rod-like LLOs is constructed by the treatment of (NH4)2SiF6 under high temperature and subsequent washing. XRD, HRTEM, and Raman spectra verify the existence of the spinel phase of Li1-xMn2O4 on the surface of LLOs by the modification. The results of electrochemical measurements show that the modified LLOs exhibit a higher ICE of 87% with an excellent cycling retention of 90.4% (after 100 cycles at 1 C). These improvements on the electrochemical performance are caused by the high Li+ diffusion and improved the redox reversibility of oxygen ions on the LLOs with the unique structure of the Ligradient and spinel coating layer on the surface.
引用
收藏
页码:4641 / 4650
页数:10
相关论文
共 44 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Enhanced Electrochemical Performance of Li-Rich Cathode Materials by Organic Fluorine Doping and Spinel L1-xNiyMn2-yO4 Coating [J].
Chen, Shengzhou ;
Xie, Yuxiang ;
Chen, Wen ;
Chen, Jialiang ;
Yang, Wei ;
Zou, Hanbo ;
Lin, Zhuoying .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (01) :121-128
[3]   Surface Properties of LiCoO2 Investigated by XPS Analyses and Theoretical Calculations [J].
Daheron, L. ;
Martinez, H. ;
Dedryvere, R. ;
Baraille, I. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (14) :5843-5852
[4]   In situ formation of LiF decoration on a Li-rich material for long-cycle life and superb low-temperature performance [J].
Ding, Xiang ;
Li, Yi-Xuan ;
Chen, Fei ;
He, Xiao-Dong ;
Yasmin, Aqsa ;
Hu, Qiao ;
Wen, Zhao-Yin ;
Chen, Chun-Hua .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11513-11519
[5]   An Ultra-Long-Life Lithium-Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries [J].
Ding, Xiaokai ;
Luo, Dong ;
Cui, Jiaxiang ;
Xie, Huixian ;
Ren, Qingqing ;
Lin, Zhan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (20) :7778-7782
[6]   Synthesis-Structure-Property Relations in Layered, "Li-excess" Oxides Electrode Materials Li[Li1/3-2x/3NixMn2/3-x/3]O2 (x=1/3, 1/4, and 1/5) [J].
Fell, Christopher R. ;
Carroll, Kyler J. ;
Chi, Miaofang ;
Meng, Ying Shirley .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :A1202-A1211
[7]   Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4 [J].
Fu, Qiang ;
Du, Fei ;
Bian, Xiaofei ;
Wang, Yuhui ;
Yan, Xiao ;
Zhang, Yongquan ;
Zhu, Kai ;
Chen, Gang ;
Wang, Chunzhong ;
Wei, Yingjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7555-7562
[8]   Electrochemical energy storage in a sustainable modern society [J].
Goodenough, John B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :14-18
[9]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603