LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity

被引:847
作者
Nioche, Christophe [1 ]
Orlhac, Fanny [1 ]
Boughdad, Sarah [1 ]
Reuze, Sylvain [2 ,3 ]
Goya-Outi, Jessica [1 ]
Robert, Charlotte [2 ,3 ]
Pellot-Barakat, Claire [1 ]
Soussan, Michael [1 ,4 ]
Frouin, Frederique [1 ]
Buvat, Irene [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS, Imagerie Mol,IN Vivo,CEA,Inserm, Orsay, France
[2] Univ Paris Saclay, Univ Paris Sud, Inserm U1030, Villejuif, France
[3] Univ Paris Saclay, Univ Paris Sud, Dept Radiotherapy, Gustave Roussy, Villejuif, France
[4] Paris 13 Univ Bobigny, Hop Avicenne, APHP, Nucl Med Serv, Villetaneuse, France
基金
欧盟地平线“2020”;
关键词
F-18-FDG PET IMAGES; TEXTURE ANALYSIS;
D O I
10.1158/0008-5472.CAN-18-0125
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware called LIFEx, which enables the calculation of conventional, histogram-based, textural, and shape features from PET, SPECT, MR, CT, and US images, or from any combination of imaging modalities. The application does not require any programming skills and was developed for medical imaging professionals. The goal is that independent and multicenter evidence of the usefulness and limitations of radiomic features for characterization of tumor heterogeneity and subsequent patient management can be gathered. Many options are offered for interactive textural index calculation and for increasing the reproducibility among centers. The software already benefits from a large user community (more than 800 registered users), and interactions within that community are part of the development strategy. Significance: This study presents a user-friendly, multiplatform freeware to extract radiomic features from PET, SPECT, MR, CT, and US images, or any combination of imaging modalities. (C) 2018 AACR.
引用
收藏
页码:4786 / 4789
页数:4
相关论文
共 13 条
[1]   Quantification of Heterogeneity as a Biomarker in Tumor Imaging: A Systematic Review [J].
Alic, Lejla ;
Niessen, Wiro J. ;
Veenland, Jifke F. .
PLOS ONE, 2014, 9 (10)
[2]   False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review [J].
Chalkidou, Anastasia ;
O'Doherty, Michael J. ;
Marsden, Paul K. .
PLOS ONE, 2015, 10 (05)
[3]   Cancer heterogeneity: implications for targeted therapeutics [J].
Fisher, R. ;
Pusztai, L. ;
Swanton, C. .
BRITISH JOURNAL OF CANCER, 2013, 108 (03) :479-485
[4]  
Fomel S, 2009, COMPUT SCI ENG, V11, P5, DOI 10.1109/MCSE.2009.14
[5]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[6]   The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis [J].
Leijenaar, Ralph T. H. ;
Nalbantov, Georgi ;
Carvalho, Sara ;
van Elmpt, Wouter J. C. ;
Troost, Esther G. C. ;
Boellaard, Ronald ;
Aerts, Hugo J. W. L. ;
Gillies, Robert J. ;
Lambin, Philippe .
SCIENTIFIC REPORTS, 2015, 5
[7]   Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards [J].
Nyflot, Matthew J. ;
Yang, Fei ;
Byrd, Darrin ;
Bowen, Stephen R. ;
Sandison, George A. ;
Kinahan, Paul E. .
JOURNAL OF MEDICAL IMAGING, 2015, 2 (04)
[8]   A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET [J].
Orlhac, Fanny ;
Boughdad, Sarah ;
Philippe, Cathy ;
Stalla-Bourdillon, Hugo ;
Nioche, Christophe ;
Champion, Laurence ;
Soussan, Michael ;
Frouin, Frederique ;
Frouin, Vincent ;
Buvat, Irene .
JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (08) :1321-1328
[9]   Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images [J].
Orlhac, Fanny ;
Theze, Benoit ;
Soussan, Michael ;
Boisgard, Raphael ;
Buvat, Irene .
JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (11) :1823-1828
[10]   18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer [J].
Orlhac, Fanny ;
Soussan, Michael ;
Chouahnia, Kader ;
Martinod, Emmanuel ;
Buvat, Irene .
PLOS ONE, 2015, 10 (12)