Compact hydrogen production systems for solid polymer fuel cells

被引:46
作者
Ledjeff-Hey, K [1 ]
Formanski, V [1 ]
Kalk, T [1 ]
Roes, J [1 ]
机构
[1] Gerhard Mercator Univ GH Duisburg, D-47057 Duisburg, Germany
关键词
hydrogen production; solid polymer fuel cells; methanol reforming; metal membrane separation; thermal cracking of propane; catalytic cracking of propane;
D O I
10.1016/S0378-7753(97)02760-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Generally there are several ways to produce hydrogen gas from carbonaceous fuels like natural gas, oil or alcohols. Most of these processes are designed for large-scale industrial production and are not suitable for a compact hydrogen production system (CHYPS) in the power range of 1 kW. In order to supply solid polymer fuel cells (SPFC) with hydrogen, a compact fuel processor is required for mobile applications. The produced hydrogen-rich gas has to have a low level of harmful impurities; in particular the carbon monoxide content has to be lower than 20 ppmv. Integrating the reaction step, the gas purification and the heat supply leads to small-scale hydrogen production systems. The steam reforming of methanol is feasible at copper catalysts in a low temperature range of 200-350 degrees C. The combination of a small-scale methanol reformer and a metal membrane as purification step forms a compact system producing high-purity hydrogen. The generation of a SPFC hydrogen fuel gas can also be performed by thermal or catalytic cracking of liquid hydrocarbons such as propane. At a temperature of 900 degrees C the decomposition of propane into carbon and hydrogen cakes place. A fuel processor based on this simple concept produces a gas stream with a hydrogen content of more than 90 vol.% and without CO and CO2. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 12 条
[1]   HYDROGEN-PRODUCTION BY THE CATALYTIC STEAM REFORMING OF METHANOL .1. THE THERMODYNAMICS [J].
AMPHLETT, JC ;
EVANS, MJ ;
JONES, RA ;
MANN, RF ;
WEIR, RD .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1981, 59 (06) :720-727
[2]   METAL COMPOSITE MEMBRANES FOR HYDROGEN SEPARATION [J].
ATHAYDE, AL ;
BAKER, RW ;
NGUYEN, P .
JOURNAL OF MEMBRANE SCIENCE, 1994, 94 :299-311
[3]  
BETTERIDGE W, 1975, PLATIN MET REV, V19, P50
[4]  
BOOTH JCS, HYDROGEN ENERGY PROG, V11, P96
[5]   KINETIC MECHANISM FOR THE REACTION BETWEEN METHANOL AND WATER OVER A CU-ZNO-AL2O3 CATALYST [J].
JIANG, CJ ;
TRIMM, DL ;
WAINWRIGHT, MS ;
CANT, NW .
APPLIED CATALYSIS A-GENERAL, 1993, 97 (02) :145-158
[6]   HYDROCARBON FORMATION FROM METHANE BY A LOW-TEMPERATURE 2-STEP REACTION SEQUENCE [J].
KOERTS, T ;
DEELEN, MJAG ;
VANSANTEN, RA .
JOURNAL OF CATALYSIS, 1992, 138 (01) :101-114
[7]   THE REVERSIBLE DECOMPOSITION OF METHANE ON A NI-SIO2 CATALYST [J].
KUIJPERS, EGM ;
JANSEN, JW ;
VANDILLEN, AJ ;
GEUS, JW .
JOURNAL OF CATALYSIS, 1981, 72 (01) :75-82
[8]   Hydrogen in palladium and palladium alloys [J].
Lewis, FA .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1996, 21 (06) :461-464
[9]  
POESCHEL E, 1965, Z PHYS CHEM, V44, P143
[10]   Catalytic decomposition of natural gas to hydrogen for fuel cell applications [J].
Poirier, MG ;
Sapundzhiev, C .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1997, 22 (04) :429-433