Repurposing the yellow fever vaccine for intratumoral immunotherapy

被引:28
|
作者
Aznar, Maria Angela [1 ,6 ]
Molina, Carmen [1 ]
Teijeira, Alvaro [1 ,2 ,3 ]
Rodriguez, Inmaculada [1 ,2 ,3 ]
Azpilikueta, Arantza [1 ,3 ]
Garasa, Saray [1 ,3 ]
Sanchez-Paulete, Alfonso R. [1 ,7 ]
Cordeiro, Luna [1 ,3 ]
Etxeberria, Inaki [1 ]
Alvarez, Maite [1 ]
Rius-Rocabert, Sergio [4 ,5 ]
Nistal-Villan, Estanislao [4 ,5 ]
Berraondo, Pedro [1 ,2 ,3 ]
Melero, Ignacio [1 ,2 ,3 ]
机构
[1] Univ Navarra, Ctr Appl Med Res CIMA, Pamplona, Spain
[2] CIBERONC, Madrid, Spain
[3] Inst Invest Navarra IDISNA, Pamplona, Spain
[4] CEU Univ, Univ CEU San Pablo, Fac Farm, Microbiol Sect,Dept CC Farmaceut & Salud, Madrid, Spain
[5] CEU Univ, Univ CEU San Pablo, Pablo CEU, IMMA, Madrid, Spain
[6] Univ Penn, Perelman Sch Med, Ctr Cellular Immunotherapies, Philadelphia, PA 19104 USA
[7] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
关键词
17D; cancer immunotherapy; intratumoral administration; virotherapy; yellow fever vaccine; CD8(+) T-CELLS; MONOCLONAL-ANTIBODIES; ONCOLYTIC VIROTHERAPY; CANCER-IMMUNOTHERAPY; DENDRITIC CELLS; I INTERFERON; RESPONSES; VIRUS; THERAPY; ACTIVATION;
D O I
10.15252/emmm.201910375
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Live 17D is widely used as a prophylactic vaccine strain for yellow fever virus that induces potent neutralizing humoral and cellular immunity against the wild-type pathogen. 17D replicates and kills mouse and human tumor cell lines but not non-transformed human cells. Intratumoral injections with viable 17D markedly delay transplanted tumor progression in a CD8 T-cell-dependent manner. In mice bearing bilateral tumors in which only one is intratumorally injected, contralateral therapeutic effects are observed consistent with more prominent CD8 T-cell infiltrates and a treatment-related reduction of Tregs. Additive efficacy effects were observed upon co-treatment with intratumoral 17D and systemic anti-CD137 and anti-PD-1 immunostimulatory monoclonal antibodies. Importantly, when mice were preimmunized with 17D, intratumoral 17D treatment achieved better local and distant antitumor immunity. Such beneficial effects of prevaccination are in part explained by the potentiation of CD4 and CD8 T-cell infiltration in the treated tumor. The repurposed use of a GMP-grade vaccine to be given via the intratumoral route in prevaccinated patients constitutes a clinically feasible and safe immunotherapy approach.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A DNA Vaccine against Yellow Fever Virus: Development and Evaluation
    Maciel, Milton, Jr.
    Pereira Cruz, Fabia da Silva
    Cordeiro, Marli Tenorio
    da Motta, Marcia Archer
    Soares de Melo Cassemiro, Klecia Marilia
    Carvalho Maia, Rita de Cassia
    Bressan Queiroz de Figueiredo, Regina Celia
    Galler, Ricardo
    Freire, Marcos da Silva
    August, Joseph Thomas
    Marques, Ernesto T. A.
    Dhalia, Rafael
    PLOS NEGLECTED TROPICAL DISEASES, 2015, 9 (04):
  • [32] National review of reported Yellow fever vaccine incidents in the UK
    Gnanadurai, Roshina
    Campos-Matos, Ines
    Kanagarajah, Sanch
    Geary, Katie
    Simons, Hilary
    Patel, Dipti
    TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2022, 47
  • [33] Yellow fever vaccine safety in immunocompromised individuals: a systematic review and meta-analysis
    Wigg de Araujo Lagos, Leticia
    de Jesus Lopes de Abreu, Ariane
    Caetano, Rosangela
    Braga, Jose Ueleres
    JOURNAL OF TRAVEL MEDICINE, 2023, 30 (02)
  • [34] A RAPID TEST FOR MEASURING THE INFECTIVITY OF YELLOW-FEVER VACCINE
    SOOD, DK
    AGGARWAL, RK
    KUMAR, S
    SOKHEY, J
    VACCINE, 1995, 13 (05) : 427 - 428
  • [35] TLR expression and NK cell activation after human yellow fever vaccination
    da Costa Neves, Patricia Cristina
    de Souza Matos, Denise Cristina
    Marcovistz, Rugimar
    Galler, Ricardo
    VACCINE, 2009, 27 (41) : 5543 - 5549
  • [36] Impact of HIV-Related Immune Impairment of Yellow Fever Vaccine Immunogenicity in People Living with HIV-ANRS 12403
    Caetano, Diogo Gama
    Toledo, Thais Stelzer
    de Lima, Ana Carolina Souza
    Giacoia-Gripp, Carmem Beatriz Wagner
    de Almeida, Dalziza Victalina
    de Lima, Sheila Maria Barbosa
    Azevedo, Adriana de Souza
    Morata, Michelle
    Grinsztejn, Beatriz
    Cardoso, Sandra Wagner
    da Costa, Marcellus Dias
    Brandao, Luciana Gomes Pedro
    Bispo de Filippis, Ana Maria
    Scott-Algara, Daniel
    Coelho, Lara Esteves
    Cortes, Fernanda Heloise
    VACCINES, 2024, 12 (06)
  • [37] Synergistic combination therapy using cowpea mosaic virus intratumoral immunotherapy and Lag-3 checkpoint blockade
    Karan, Sweta
    Jung, Eunkyeong
    Boone, Christine
    Steinmetz, Nicole F.
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2024, 73 (03)
  • [38] mRNA vaccine platforms: linking infectious disease prevention and cancer immunotherapy
    Haghmorad, Dariush
    Eslami, Majid
    Orooji, Niloufar
    Halabitska, Iryna
    Kamyshna, Iryna
    Kamyshnyi, Oleksandr
    Oksenych, Valentyn
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 13
  • [39] New generation dendritic cell vaccine for immunotherapy of acute myeloid leukemia
    Subklewe, Marion
    Geiger, Christiane
    Lichtenegger, Felix S.
    Javorovic, Miran
    Kvalheim, Gunnar
    Schendel, Dolores J.
    Bigalke, Iris
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2014, 63 (10) : 1093 - 1103
  • [40] A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice
    Kum, Dieudonne Buh
    Boudewijns, Robbert
    Ma, Ji
    Mishra, Niraj
    Schols, Dominique
    Neyts, Johan
    Dallmeier, Kai
    EMERGING MICROBES & INFECTIONS, 2020, 9 (01) : 520 - 533