Revisiting Reductants in the Multi-adjoint Logic Programming Framework

被引:0
作者
Julian-Iranzo, Pascual [1 ]
Medina, Jesus [2 ]
Ojeda-Aciego, Manuel [3 ]
机构
[1] Univ Castilla La Mancha, Dept Informat Technol & Syst, E-13071 Ciudad Real, Spain
[2] Univ Cadiz, Dept Matemat, Cadiz, Spain
[3] Univ Malaga, Dept Matemat Aplicada, Malaga, Spain
来源
LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2014 | 2014年 / 8761卷
关键词
Fuzzy Logic Programming; Multi-adjoint Logic Programming; Reductants; FUZZY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, after revisiting the different notions of reductant arisen in the framework of multi-adjoint logic programming and akin frameworks, we introduce a new, more adequate, notion of reductant in the context of multi-adjoint logic programs. We study some of its properties and its relationships with other notions of reductants.
引用
收藏
页码:694 / 702
页数:9
相关论文
共 17 条
  • [1] Revisiting reductants in the multi-adjoint logic programming framework
    Julián-Iranzo, Pascual, 1600, Springer Verlag (8761): : 694 - 702
  • [2] On reductants in the framework of multi-adjoint logic programming
    Julian-Iranzo, Pascual
    Medina, Jesus
    Ojeda-Aciego, Manuel
    FUZZY SETS AND SYSTEMS, 2017, 317 : 27 - 43
  • [3] Beyond multi-adjoint logic programming
    Moreno, Gines
    Penabad, Jaime
    Vazquez, Carlos
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (09) : 1956 - 1975
  • [4] Extended multi-adjoint logic programming
    Eugenia Cornejo, M.
    Lobo, David
    Medina, Jesus
    FUZZY SETS AND SYSTEMS, 2020, 388 : 124 - 145
  • [5] A completeness theorem for multi-adjoint logic programming
    Medina, J
    Ojeda-Aciego, M
    Vojtás, P
    10TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3: MEETING THE GRAND CHALLENGE: MACHINES THAT SERVE PEOPLE, 2001, : 1031 - 1034
  • [6] Selecting the Coherence Notion in Multi-adjoint Normal Logic Programming
    Eugenia Cornejo, M.
    Lobo, David
    Medina, Jestis
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 447 - 457
  • [7] Syntax and semantics of multi-adjoint normal logic programming
    Eugenia Cornejo, M.
    Lobo, David
    Medina, Jesus
    FUZZY SETS AND SYSTEMS, 2018, 345 : 41 - 62
  • [8] Fuzzy Sets for a Declarative Description of Multi-adjoint Logic Programming
    Moreno, Gines
    Penabad, Jaime
    Vazquez, Carlos
    ROUGH SETS AND CURRENT TRENDS IN SOFT COMPUTING, RSCTC 2014, 2014, 8536 : 71 - 82
  • [9] On the Declarative Semantics of Multi-Adjoint Logic Programs
    Julian, P.
    Moreno, G.
    Penabad, J.
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 253 - +
  • [10] Symbolic Unfolding of Multi-adjoint Logic Programs
    Moreno, Gines
    Penabad, Jaime
    Riaza, Jose Antonio
    TRENDS IN MATHEMATICS AND COMPUTATIONAL INTELLIGENCE, 2019, 796 : 43 - 51