Breaking adiabatic quantum control with deep learning

被引:33
作者
Ding, Yongcheng [1 ,2 ,3 ]
Ban, Yue [3 ,4 ]
Martin-Guerrero, Jose D. [5 ]
Solano, Enrique [1 ,2 ,3 ,6 ,7 ]
Casanova, Jorge [3 ,6 ]
Chen, Xi [1 ,2 ,3 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[4] Shanghai Univ, Coll Mat Sci & Engn, Shanghai 200444, Peoples R China
[5] Univ Valencia, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain
[6] Ikerbasque, Basque Fdn Sci, Plaza Euskadi 5, Bilbao 48009, Spain
[7] IQM, Nymphenburgerstr 86, D-80636 Munich, Germany
关键词
DYNAMICS;
D O I
10.1103/PhysRevA.103.L040401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the noisy intermediate-scale quantum era, optimal digitized pulses are requisite for efficient quantum control. This goal is translated into dynamic programming, in which a deep reinforcement learning (DRL) agent is gifted. As a reference, shortcuts to adiabaticity (STA) provide analytical approaches to adiabatic speedup by pulse control. Here, we select the single-component control of qubits, resembling the ubiquitous two-level Landau-Zener problem for gate operation. We aim at obtaining fast and robust digital pulses by combining the STA and DRL algorithm. In particular, we find that DRL leads to robust digital quantum control with the operation time bounded by quantum speed limits dictated by STA. In addition, we demonstrate that robustness against systematic errors can be achieved by DRL without any input from STA. Our results introduce a general framework of digital quantum control, leading to a promising enhancement in quantum information processing.
引用
收藏
页数:6
相关论文
共 73 条
[1]  
Ai M.-Z., ARXIV210109020
[2]  
Allen L., 1975, OPTICAL RESONANCE 2
[3]   Deep reinforcement learning for quantum gate control [J].
An, Zheng ;
Zhou, D. L. .
EPL, 2019, 126 (06)
[4]  
Antonoglou I., ARXIV171201815
[5]   The roles of drift and control field constraints upon quantum control speed limits [J].
Arenz, Christian ;
Russell, Benjamin ;
Burgarth, Daniel ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2017, 19
[6]   Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems [J].
Barnes, Edwin ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[7]  
Bason MG, 2012, NAT PHYS, V8, P147, DOI [10.1038/nphys2170, 10.1038/NPHYS2170]
[8]   Arbitrarily accurate composite pulse sequences [J].
Brown, KR ;
Harrow, AW ;
Chuang, IL .
PHYSICAL REVIEW A, 2004, 70 (05) :052318-1
[9]   Reinforcement Learning in Different Phases of Quantum Control [J].
Bukov, Marin ;
Day, Alexandre G. R. ;
Sels, Dries ;
Weinberg, Phillip ;
Polkovnikov, Anatoli ;
Mehta, Pankaj .
PHYSICAL REVIEW X, 2018, 8 (03)
[10]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)