Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients

被引:5
作者
Brenti, Francesco [1 ]
Mongelli, Pietro [2 ]
Sentinelli, Paolo [1 ,3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00173 Rome, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat, Piazzale Aldo Moro, I-00185 Rome, Italy
[3] Univ Chile, Dept Matemat, Casilla 653, Santiago 3425, Chile
关键词
Kazhdan-Lusztig polynomial; Quasi-minuscule quotient; Weyl group; Combinatorics; COMBINATORIAL FORMULA; MACDONALD POLYNOMIALS; VARIETIES; MODULES; SPACES;
D O I
10.1016/j.aam.2016.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the parabolic Kazhdan-Lusztig polynomials for the quasi-minuscule quotients of Weyl groups. We give explicit closed combinatorial formulas for the parabolic Kazhdan-Lusztig polynomials of type q. Our study implies that these are always either zero or a monic power of q, and that they are not combinatorial invariants. We conjecture a combinatorial interpretation for the parabolic Kazhdan-Lusztig polynomials of type -1. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:27 / 55
页数:29
相关论文
共 29 条
[1]  
[Anonymous], 1986, ENUMERATIVE COMBINAT
[2]  
[Anonymous], 1980, Geometry of the Laplace Operator. Proc. Symp. Pure Math 36 Amer. Math. Soc
[3]  
Bjorner A., 2005, GRADUATES TEXTS MATH, V231
[5]   Kazhdan-Lusztig and R-polynomials, Young's lattice, and Dyck partitions [J].
Brenti, F .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :257-286
[6]  
Brenti F, 2009, T AM MATH SOC, V361, P1703
[7]   THE KAZHDAN-LUSZTIG CONJECTURE FOR GENERALIZED VERMA MODULES [J].
CASIAN, LG ;
COLLINGWOOD, DH .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (04) :581-600
[8]   On the quantum cohomology of adjoint varieties [J].
Chaput, P. E. ;
Perrin, N. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 :294-330
[9]   Deformed Kazhdan-Lusztig elements and Macdonald polynomials [J].
de Gier, Jan ;
Lascoux, Alain ;
Sorrell, Mark .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) :183-211