Locality Estimates for Quantum Spin Systems

被引:36
作者
Nachtergaele, Bruno [1 ]
Sims, Robert [2 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
NEW TRENDS IN MATHEMATICAL PHYSICS | 2009年
基金
奥地利科学基金会; 美国国家科学基金会;
关键词
LIEB-ROBINSON BOUNDS; LATTICE SYSTEMS; SPECTRAL GAP; THEOREM; CHAINS;
D O I
10.1007/978-90-481-2810-5_39
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review some recent results that express or rely on the locality properties of the dynamics of quantum spin systems. In particular, we present a slightly sharper version of the recently obtained Lieb-Robinson bound on the group velocity for such systems on a large class of metric graphs. Using this bound we provide expressions of the quasi-locality of the dynamics in various forms, present a proof of the Exponential Clustering Theorem, and discuss a multi-dimensional Lieb-Schultz-Mattis Theorem.
引用
收藏
页码:591 / +
页数:2
相关论文
共 24 条
[1]   A PROOF OF PART OF HALDANE CONJECTURE ON SPIN CHAINS [J].
AFFLECK, I ;
LIEB, EH .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 12 (01) :57-69
[2]  
[Anonymous], MARKOV PROCESSES REL
[3]  
ARAKI H, 1962, HELV PHYS ACTA, V35, P164
[4]   GIBBS STATES OF A ONE DIMENSIONAL QUANTUM LATTICE [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (02) :120-&
[5]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[6]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[7]   A REMARK ON THE CLUSTER THEOREM [J].
FREDENHAGEN, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 97 (03) :461-463
[8]  
Haag R., 1992, Texts and Monographs in Physics
[10]   Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance [J].
Hastings, MB ;
Wen, XG .
PHYSICAL REVIEW B, 2005, 72 (04)