Detecting synchronization in coupled stochastic ecosystem networks

被引:21
作者
Kouvaris, N. [1 ,2 ]
Provata, A. [2 ]
Kugiumtzis, D. [1 ]
机构
[1] Aristotle Univ Thessaloniki, Fac Engn, Dept Math Phys & Computat Sci, Thessaloniki 54124, Greece
[2] Natl Ctr Sci Res Demokritos, Inst Phys Chem, Athens 15310, Greece
关键词
Synchronization analysis; Coupled ecosystem network; Phase transition; Mutual information; Surrogate data; PHASE SYNCHRONIZATION; INFORMATION-TRANSMISSION; SURROGATE; NONLINEARITY;
D O I
10.1016/j.physleta.2009.11.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Instantaneous phase difference, synchronization index and mutual information are considered in order to detect phase transitions, collective behaviours and synchronization phenomena that emerge for different levels of diffusive and reactive activity in stochastic networks. The network under investigation is a spatial 2D lattice which serves as a Substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. Kinetic Monte Carlo simulations demonstrate that the system spontaneously organizes into a number of asynchronous local oscillators, when only nearest neighbour interactions are considered. In contrast, the oscillators can be correlated. phase synchronized and completely synchronized when introducing different interactivity rules (diffusive or reactive) for nearby and distant species. The quantitative measures of synchronization show that long distance diffusion Coupling induces phase synchronization after a well defined transition point, while long distance reaction coupling induces smeared phase synchronization. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:507 / 515
页数:9
相关论文
共 45 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
Anishchenko V. S., 2007, NONLINEAR DYNAMICS C
[3]  
[Anonymous], FLUCT NOISE LETT
[4]  
[Anonymous], PHYSICA D
[5]   Transmission of information in active networks [J].
Baptista, M. S. ;
Kurths, J. .
PHYSICAL REVIEW E, 2008, 77 (02)
[6]   Transmission of information and synchronization in a pair of coupled chaotic circuits: An experimental overview [J].
Baptista, M. S. ;
Garcia, S. P. ;
Dana, S. K. ;
Kurths, J. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 165 (1) :119-128
[7]   Finding Quasi-Optimal Network Topologies for Information Transmission in Active Networks [J].
Baptista, Murilo S. ;
de Carvalho, Josue X. ;
Hussein, Mahir S. .
PLOS ONE, 2008, 3 (10)
[8]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[9]   Synchronization of stochastic oscillations due to long-range diffusion [J].
Efimov, A. ;
Shabunin, A. ;
Provata, A. .
PHYSICAL REVIEW E, 2008, 78 (05)
[10]   Frequency and phase synchronization in stochastic systems [J].
Freund, JA ;
Schimansky-Geier, L ;
Hänggi, P .
CHAOS, 2003, 13 (01) :225-238