In this article, we demonstrate high hysteresis in a well characterized homogeneous Tb-Al glass which contained no crystallites or crystalline embryos as verified using conventional and synchrotron diffraction, neutron diffraction, and direct observation in the transmission electron microscope. At low temperature (2 K), the metallic glass structure exhibited intrinsic coercivities approaching 23 kOe and high isotropic energy products of 12.4 MGOe. After crystallization into a three-phase nanoscale structure, the hard magnetic properties were found to be far inferior to that obtainable in the glass structure. From the well defined intrinsic magnetic properties (M-sat,T-c), it is clear that the glass contains one or more types of well defined associations (i.e., clusters) and that these associations lead to ferromagnetic coupling/ordering. From the large random magnetic anisotropy, it is probable that the domain size is much larger than the structural cluster size. The measured single-phase loop shapes and the development of high coercivity in the glass state can be explained by an "exchange bias" mechanism resulting in a near perfect distribution of "fragile" pinning centers. (C) 2003 American Institute of Physics.