Lax Formula for Obstacle Problems

被引:0
作者
Barron, E. N. [1 ]
机构
[1] Loyola Univ, Dept Math & Stat, Chicago, IL 60660 USA
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2019年 / 4卷 / 02期
关键词
Lax formula; Hopf formula; optimal control; obstacle problem; VISCOSITY SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first order obstacle problem min{u(t) + H(Du), g(x) - u} = 0, u(T, x) = g(x) has a Hopf formula in the case when g is convex. It was first derived by A. Subbotin [11]. The case when g is continuous but the Hamiltonian H is convex is considered here. The corresponding Lax formula is derived to be u(t, x) = sup(y is an element of Rn) inf(t <=tau <= T) {g(y) - (tau - t)H* (y - x/tau - t)} = sup(y is an element of Rn) inf(t <=tau <= T) {g(x + y(tau - t)) - (tau - t)H* (y)}. This formula is shown to provide a viscosity solution of the obstacle problem. The argument to derive and prove this is based on optimal control in L-infinity.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 14 条
[1]  
Alvarez O, 1999, INDIANA U MATH J, V48, P993
[2]  
[Anonymous], GRADUATE STUDIES MAT
[3]  
[Anonymous], 1995, GEN SOLUTION 1 ORDER
[4]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[5]  
Bardi M, 1997, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, V12
[6]  
Barron EN, 2016, MINIMAX THEORY APPL, V1, P51
[7]  
Barron E. N., HOPF FORMULAS UNPUB
[8]   Semicontinuous viscosity solutions for quasiconvex Hamiltonians [J].
Barron, Emmanuel N. .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (19-20) :737-741
[9]  
Barron EN, 1997, APPL MATH OPT, V35, P237
[10]   THE BELLMAN EQUATION FOR MINIMIZING THE MAXIMUM COST [J].
BARRON, EN ;
ISHII, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (09) :1067-1090