Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries

被引:8
作者
Liang, Bin [1 ]
Cheng, Fangyuan [2 ]
Ge, Xiaoyu [2 ]
Tan, Xuejun [1 ]
Fang, Chun [2 ]
Han, Jiantao [2 ]
机构
[1] Myj Chem Co Ltd, Puyang 457000, Henan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; electrolyte; gamma-butyrolactone; low temperature; Ni-rich NCM; LITHIUM; PERFORMANCE;
D O I
10.1021/acsaem.2c00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ni-rich LiNixMnyCozO2 (x + y + z = 1, x > 0.5, Ni rich NMC) materials are one of the most potential cathodes for high energy density lithium-ion batteries (LIBs) due to their high specific capacity and relatively low cost. However, performances of LIBs with the Ni-rich NCM cathode below 0 degrees C are restricted by low ion conductivity of the electrolyte and a slow ion diffusion rate at the electrode-electrolyte interphase. Here, gamma-butyrolactone (GBL) with a low melting point and high ion conductivity is used to partially replace ethylene carbonate, which is conducive to lower the freezing point and increase the low-temperature ionic conductivity of the electrolyte, and the addition of GBL improves the dissolution of lithium difluoro-(oxalato)borate (LiDFOB) in a traditional carbonate solvent. Instead of lithium hexafluorophosphate (LiPF6), LiDFOB can form a F-, B-, and 0-rich interfacial phase at the Ni-rich NCM cathode, suppressing the fatal interface reaction and reducing the interface impedance. As a result, the electrolyte using GBL as the cosolvent and LiDFOB as the lithium salt can significantly improve the specific discharge capacity and cycling stability of LiNi0.8Co0.1Mn0.1O2/Li cells at 0 degrees C and -30 degrees C. At 0 degrees C, the LiNi0.8Co0.1Mn0.1O2/Li cells have a discharge specific capacity of 160 mA h g(-1) and a capacity retention rate of 99% over 100 cycles. They deliver a decent capacity at -30 degrees C. This rational design of an electrolyte via optimizing the combination of a solvent and a lithium salt has been confirmed to be a low cost but rather an effective method to improve the low-temperature performances of LIBs.
引用
收藏
页码:5867 / 5874
页数:8
相关论文
共 50 条
[41]   Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries [J].
Yang, Xing ;
Tang, Yiwei ;
Zheng, Jiangfeng ;
Shang, Guozhi ;
Wu, Jian ;
Lai, Yanqing ;
Li, Jie ;
Zhang, Zhian .
ELECTROCHIMICA ACTA, 2019, 320
[42]   Dual Modification Strategy for Enhanced Cycling and Rate Performance of Ni-Rich Cathode Materials in Lithium-Ion Batteries [J].
Zhang, Xin ;
Wu, Tao ;
Jian, Jiyuan ;
Lin, Shuang ;
Sun, Dandan ;
Fu, Gang ;
Xu, Yan ;
Liu, Ziwei ;
Li, Sai ;
Huo, Hua ;
Ma, Yulin ;
Yin, Geping ;
Zuo, Pengjian ;
Cheng, Xinqun ;
Du, Chunyu .
SMALL, 2024, 20 (45)
[43]   Research progress in low-temperature discharge performance of Ni-rich ternary lithium-ion batteries br [J].
Han Fujuan ;
Chang Zenghua ;
Zhao Jinling ;
Wang Rennian ;
Ding Haiyang ;
Lu Shigang .
CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2022, 50 (09) :1-17
[44]   An Evaluation of a Systematic Series of Cobalt-Free Ni-Rich Core-Shell Materials as Positive Electrode Materials for Li-Ion Batteries [J].
Liu, Yulong ;
Ouyang, Dongxu ;
Rathore, Divya ;
Wu, Haohan ;
Li, Kui ;
Wang, Yiqiao ;
Sha, Jin ;
Yin, Shuo ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
[45]   Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries [J].
Doo, Sung Wook ;
Lee, Suyeon ;
Kim, Hanseul ;
Choi, Jin H. ;
Lee, Kyu Tae .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6246-6253
[46]   Incorporation of Titanium into Ni-Rich Layered Cathode Materials for Lithium-Ion Batteries [J].
Kim, Jong Hwa ;
Kim, Hyuntae ;
Kim, Won-Joo ;
Kim, Yong-Chan ;
Jung, Jae Yup ;
Rhee, Dong Young ;
Song, Jun Ho ;
Cho, Woosuk ;
Park, Min-Sik .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (12) :12204-12211
[47]   High capacity Li/Ni rich Ni-Ti-Mo oxide cathode for Li-ion batteries [J].
Xu, Jianan ;
Babu, Ganguli ;
Kato, Keiko ;
Hernandez, Francisco C. Robles ;
Puthirath, Anand B. ;
Britz, Alexander ;
Nordlund, Dennis ;
Sainio, Sami ;
Bergmann, Uwe ;
Ajayan, Pulickel M. .
SOLID STATE IONICS, 2020, 345
[48]   Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries [J].
Abebe, Eyob Belew ;
Yang, Chun-Chen ;
Wu, She-Huang ;
Chien, Wen-Chen ;
Li, Ying-Jeng James .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) :14295-14308
[49]   Critical Review on Low-Temperature Li-Ion/Metal Batteries [J].
Zhang, Nan ;
Deng, Tao ;
Zhang, Shuoqing ;
Wang, Changhong ;
Chen, Lixin ;
Wang, Chunsheng ;
Fan, Xiulin .
ADVANCED MATERIALS, 2022, 34 (15)
[50]   Strain Mechanism Study on Li-rich Layered Cathode Materials Li-Ni-Mn-O for Li-ion Batteries [J].
Liu, Jihong ;
Zhu, Jiapeng ;
Zhang, Xu ;
Zhang, Jiyang ;
Huang, Chaoyang ;
Jia, Guixiao ;
An, Shengli .
ACTA CHIMICA SINICA, 2025, 83 (02) :101-109