Tailoring Electrolytes to Enable Low-Temperature Cycling of Ni-Rich NCM Cathode Materials for Li-Ion Batteries

被引:8
作者
Liang, Bin [1 ]
Cheng, Fangyuan [2 ]
Ge, Xiaoyu [2 ]
Tan, Xuejun [1 ]
Fang, Chun [2 ]
Han, Jiantao [2 ]
机构
[1] Myj Chem Co Ltd, Puyang 457000, Henan, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
lithium-ion batteries; electrolyte; gamma-butyrolactone; low temperature; Ni-rich NCM; LITHIUM; PERFORMANCE;
D O I
10.1021/acsaem.2c00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Ni-rich LiNixMnyCozO2 (x + y + z = 1, x > 0.5, Ni rich NMC) materials are one of the most potential cathodes for high energy density lithium-ion batteries (LIBs) due to their high specific capacity and relatively low cost. However, performances of LIBs with the Ni-rich NCM cathode below 0 degrees C are restricted by low ion conductivity of the electrolyte and a slow ion diffusion rate at the electrode-electrolyte interphase. Here, gamma-butyrolactone (GBL) with a low melting point and high ion conductivity is used to partially replace ethylene carbonate, which is conducive to lower the freezing point and increase the low-temperature ionic conductivity of the electrolyte, and the addition of GBL improves the dissolution of lithium difluoro-(oxalato)borate (LiDFOB) in a traditional carbonate solvent. Instead of lithium hexafluorophosphate (LiPF6), LiDFOB can form a F-, B-, and 0-rich interfacial phase at the Ni-rich NCM cathode, suppressing the fatal interface reaction and reducing the interface impedance. As a result, the electrolyte using GBL as the cosolvent and LiDFOB as the lithium salt can significantly improve the specific discharge capacity and cycling stability of LiNi0.8Co0.1Mn0.1O2/Li cells at 0 degrees C and -30 degrees C. At 0 degrees C, the LiNi0.8Co0.1Mn0.1O2/Li cells have a discharge specific capacity of 160 mA h g(-1) and a capacity retention rate of 99% over 100 cycles. They deliver a decent capacity at -30 degrees C. This rational design of an electrolyte via optimizing the combination of a solvent and a lithium salt has been confirmed to be a low cost but rather an effective method to improve the low-temperature performances of LIBs.
引用
收藏
页码:5867 / 5874
页数:8
相关论文
共 50 条
[31]   A first-principle study on the properties of Zr-doped Ni-rich cathode for Li-ion batteries [J].
Zhou, Qinghua ;
Zhang, Huaxin ;
Liu, Zhiping ;
Zeng, Liying ;
Sun, Mi ;
Hu, Wei ;
Li, Huili .
IONICS, 2023, 29 (09) :3537-3542
[32]   Engineering robust biopolymer-derived carbon growth of Ni-rich cathode materials for high-performance Li-ion batteries [J].
Santhoshkumar, P. ;
Subburaj, T. ;
Lee, Yoona ;
Karuppasamy, K. ;
Vikraman, Dhanasekaran ;
Kim, Hyun-Seok .
JOURNAL OF ENERGY STORAGE, 2023, 69
[33]   Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries [J].
Kondrakov, Aleksandr O. ;
Schmidt, Alexander ;
Xu, Jin ;
Gesswein, Holger ;
Moenig, Reiner ;
Hartmann, Pascal ;
Sommer, Heino ;
Brezesinski, Torsten ;
Janek, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (06) :3286-3294
[34]   Blended cathode materials for all-solid-state Li-ion batteries [J].
Lee, Jeong-Seon ;
Heo, Kookjin ;
Kim, Ho-Sung ;
Kim, Min-Young ;
Kim, Jaekook ;
Kang, Sung-Won ;
Lim, Jinsub .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 :553-559
[35]   Synergistic doping chemistry enable the cycling properties of single-crystal Ni-rich cathode for lithium-ion batteries [J].
Zhang, Bao ;
Zheng, Chao ;
Xiao, Zhiming ;
Xian, Keyi ;
Wen, Heng ;
Lu, Na ;
He, Xinyou ;
Ye, Long ;
Wang, Jiexi ;
Ou, Xing ;
Wang, Chunhui .
APPLIED SURFACE SCIENCE, 2025, 684
[36]   Integrated Surface Functionalization of Li-Rich Cathode Materials for Li-Ion Batteries [J].
Wang, Dandan ;
Xu, Tinghua ;
Li, Yaping ;
Pan, Du ;
Lu, Xia ;
Hu, Yong-Sheng ;
Dai, Sheng ;
Bai, Ying .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (48) :41802-41813
[37]   Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries [J].
Wu Chengren ;
Zhao Changchun ;
Wang Zhaoxiang ;
Chen Liquan .
PROGRESS IN CHEMISTRY, 2011, 23 (10) :2038-2044
[38]   Study on d0 transition metals doped Ni-rich cathode materials for Li-ion batteries: Insights from first-principles calculations [J].
Zhou, Qinghua ;
Liu, Wenhua ;
Lv, Lu ;
Zhu, Juxia ;
Dai, Yuwen ;
Li, Huili ;
Hu, Wei .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 656
[39]   Mesoporous Iron Trifluoride Microspheres as Cathode Materials for Li-ion Batteries [J].
Long, Zhen ;
Hu, Wenyuan ;
Liu, Lihu ;
Qiu, Guohong ;
Qiao, Wencan ;
Guan, Xiangfeng ;
Qiu, Xiaoqing .
ELECTROCHIMICA ACTA, 2015, 151 :355-362
[40]   Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries [J].
Yu, Haifeng ;
Cao, Yueqiang ;
Chen, Long ;
Hu, Yanjie ;
Duan, Xuezhi ;
Dai, Sheng ;
Li, Chunzhong ;
Jiang, Hao .
NATURE COMMUNICATIONS, 2021, 12 (01)